Proof of lemma: Let A = UAa. Suppose U and V are désjoint open sets in A with A = UUV. We red to show that one of U and U.3 A and the other is empty, Each An is concored in the subspace topday inherited toom X and have also from A. There have each Az is contained in one of U or V. Moreover, if some $A_{\alpha} \subseteq U$, then since each AxI Ax = \$ we have Ax' = U. Mance, in This case, $UA_{\alpha} \leq U$. (The case where some $A_{\alpha} \leq U$ 13 proven l'entrully)

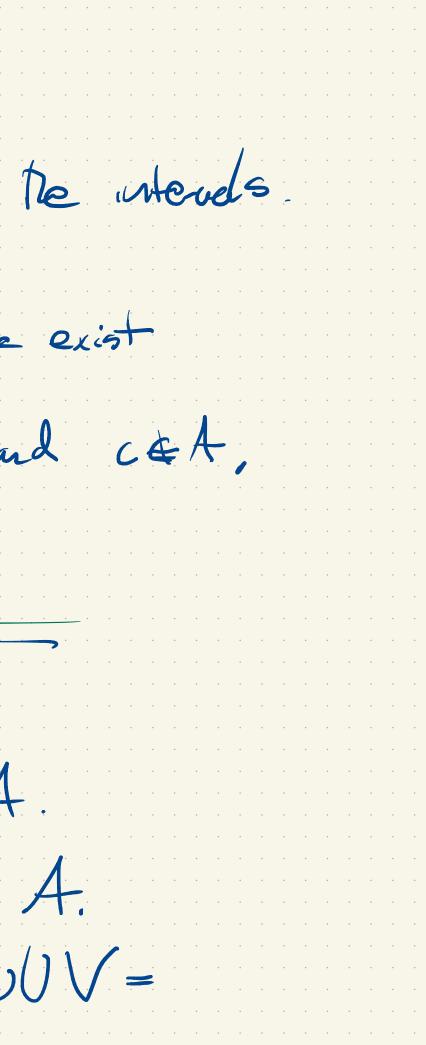
Prop: Suppose ASX is connected and $A \subseteq B \subseteq A$ Then B is connected, Con: The closure et a connected set is connected Con: May clopal interus [[a,b] is connected. (cel (4,5) 6 comedal (a.00) 9,00 (a, b)

	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
*	•	٠	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•		•	•	•	•	•	•	•	•	•		•	•		•	•	•		
•		٠	*	•					•	•	•	•	•		•				
•	•	٠			•			•	•	•	•	•	•	•	•	•		•	
/		•					•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•)	•	•	•	•		•	•		•	•	•	•	
		٠	*						•	•	•				•				
		•	٠	•	/				•										
		•	٠	J		•	•	•	٠	•	•	•	٠	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
		•																	
		•	•							•			•						
•	•	0	٠	•		•	•	•	•	٠	•	•	٠	•	•	•	•	•	•
•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•			•	•	•		•	•		•				
		•	•		•	•	•	•		•	•		•		•	•	•	•	
ľ	•	٠	٠	•	٠				٠		•	•	•	•					
	S	0	0	٠	•	•	•	•	٠	•	•	•	٠	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
		•																	
		•	•							•			•						
		•	•			•	•	•		•		•	•	•	•	•	•	•	•
•										•									•
			•																
•		•	٠	•	•	•		•	•	•	•	•	•		•	•	•		
		•	٠	•	•				•		•	•							
•	•				•										•			•	•
			•																
												•			•				
		•	•			•	•	•		•			•		•	•	•	•	•
•																			•
•			•			•			•						•				
•															•		•		
•		•						•					•			•		•	
•		•	•	•	•		•	•	•	•	•	•	•	•	•	•			•
	•		•																
			•		•										•				
		•	٠		•					•			•						

Def: A subset I = R is an interel if for all a, bEI will a Lb and ceR will aged b $(a, 5), \phi, R, [a, a], [a, b] (a, 5], [a], [a], b]$ (a, ab) (-ab) [c, ab) (-ab)Exocise: show that every intervel is are of the Every interval & connected,

• •	0 0	٠	٠	0	٠	0	٠	0	0	÷	0		ø	0	٠	0	•
	• •	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•
• •	••••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
• •			٠			•	•					•					
n[• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
				٠	٠	٠	٠	٠		٠	٠	٠	٠		٠	٠	
	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
· ·			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	• •	٠		٠	٠	۰	٠	٠	٠	٠	٠	٠	٠	٠	·	٠	0
		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•
• •	• •		٠				•							٠	·	٠	
	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
• •						•		•				•					
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
,6		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
			٠			٠	•	·			•	٠					
• •	· ·	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
• •	• •	٠		٠	٠	٠	٠	٠	0	٠	٠	٠	٠	0	٠	٠	٠
• •	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
• •	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
					•		•			•			•		•	•	
£		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
• •						٠		•									
	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
• •	• •	٠	٠			٠	•	·			•	٠			·	·	
• •	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
• •	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
• •	• •																
• •	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
• •	• •	•	٠	٠	٠	٠	•	٠	٠	٠		•	٠	۰	٠	٠	٠

Lenna: Every connected subset of Ris an interval. (m) have the connected subsets of IR are precisely the intervels Pf: Suppose ASR is not an interval. Hence the exist abet with alb and cuite accels and cEA, $\mathbf{A} = \mathbf{A} + \mathbf{A} +$ Let $U = (-\infty, c) \Lambda a d V = (c, \infty) \Lambda A$. Clenty U and U are disjocht and as open in A. Thoy are nonempty since a EU ad bEU. Since UUV =



=(R(i))/4some cEA, the sets UndVace a separation of A. (IVT) Cor: Suppose f: I > R is continuous where I = IR is as interval. Then f(I) is an interval. Pf: Observe that f(I) is connected sake intervals as connected and since le continues juge of a connected Set 15 connected. Mue f(I) is on ortenal,

Proof at Prop (A=B=A, A concord => B is concord) Soppose Und Vac open subsets of B that cover B (i.e. B=U(V). Job: Show one is ampty (and the other Since $A = B_{13}$ connected in B it is contained in one of U_{0-V} . Observe that U is absed in B (its complement is Vuluidris open) Therefore $Cl_B(A) \subseteq U$. ASBEX But $c|_{B}(A) = c|_{X}(A) \cap B = B$. $50 \quad (D \ge cl_B(A) = B.$

raps. A quotout of a connected space is connect 57 T π (Comedel I clean that of Produ COUNa XXY 13 050 CONNECTO

• •		• •	•	•	•	•	•	•	·	•		•	•	•	•	0
 .	ed		•	•	•	•	•	•	•	•	•	•	•	•	•	•
	-0]		•	•			•	•	•	•	•	•	•	•	
0				•	•	•		•		•			•	•	•	•
			•	•	•	•	•	•		•	•		•		•	•
• •		0 0			•		•	•					•		•	•
• •	• •	0 0	٠	•			•		•	•	•	•	•	•	•	•
	• •	• •	•	•	•	•	•	•	•	•	•	•		•		
• •		• •	•	•	•	•	•	•							•	•
• •	• •	• •	•		•					•	•		•		•	•
		• •	•	•	•	•		•		•				•		•
				٠		٠			•	•	•	•	•	•	•	•
• •	• •	• •	•	•	•		•	•	•	•	•	•	•	•	•	•
			•	•	•	•		•		•	•			•	•	•
			•	•		٠			•	•	•	•		•	•	•
• •	• •	• •	•		•		•	•		•	•		•	•	•	
• •		• •	•	•	•	•		•	•	•				•		•
• •		•	Λ													
	ي في	· · ·	X	٠		•	•						•	•	٠	٠
	207	ec	X	•	•	•	•	•	•	•	•	•	•	•	•	•
	207		X	•	•	•	•	•	•	•	•	•	•	•	•	•
0				•	•	•	•	•	•	•	•	•	•	•	•	•
e a c S				•	•	•	•	•	•	•	•	•	•	•	•	
J				•	•	•	•	•	•	•	•	•	•	•	•	
J							• • • • • •					• • • • • • •			•	
e a c J							• • • • • • •		• • • • • • • •	• • • • • • • •	• • • • • • • •	• • • • • • •	• • • • • • •	• • • • • • • • •	•	
J							• • • • • • • • •		• • • • • • • • •	• • • • • • • • • •	• • • • • • • • •	• • • • • • • • •	• • • • • • • • •		• • • • • • • • •	
J											• • • • • • • • • •					
J																
J																
J																
J																
J																
J																
J																

rel $S = \pi_x^{-1}$ 17 Claim Sis co $i_{\star}: Y \rightarrow S$ $i_{x_0}(\gamma) =$ (10,4 XXY $c_{x_0}(Y) = S$ for each yEl, let Observe eah TY CC 5 by a Silviter Brouer come durly $T_{\gamma} = \pi^{-1}(2\gamma)$

			•				•					
$\chi \neq \phi$ $(\neq \phi)$			•	•					٠			
$X \neq d$									٠			
· · · · · · · · · · · ·				•					•	•		
									٠			٠
(7)							•					
CX												
6 E X												
	•	·	•	*	•	•	*	•	•	•	•	*
	•	•	•	٠	•	•	٠	•	۰	•	•	
2+03)	•	•	•	•	•	•	•	•	•	•	•	•
2705	•	•	•	•	•	•	•	•	•	•	•	•
e e te se	•	•	•	٠	•	•	•	•	٠	•	•	•
	•	•	•	٠		•	٠		•	•	•	•
	٠	•	•	•	•	•	•	•			•	
<u>.</u> . <u>.</u>								•			•	
mected				•			•		•	•		•
								•				
x												
			•	•			•		•	•		•
·) · · · · · · ·	•	·	•	٠	•	•	•	•	•	•	•	٠
	٠	•	•	٠	•	•	•	•	٠	•	•	
	•	•	•	•	•	•	•	•	•	•	•	•
	٠	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	٠	•	٠	•	•	٠
	*		•	•		•	•	•	•	•	•	•
	•	•	•		•	•	٠	•	٠	•	•	٠
		•	•	•		•	•	•			•	•
	•	•	•	•			•	•	٠	•		•
		•						•				
			•	•		•		•	٠	•		•
medel									•			
MAPCAP.A												
L usin		1										
LIGM		L	N									
									٠			
at X												
as X												

Let Ry = Ty US. Then Ry is connected Since each of Sand Ty are and since SATY= 2(20,7)3 Observe $()R_{y} = X \times I$ and $\Lambda R_{y} = S \neq \phi$ since $I \neq \phi$. 50 XXY is a union of connected sets will a point of

```
\measuredangle_1
Xo
```

•			٠	٠		٠	٠	٠	٠	٠	٠	٠	٠	•	٠			٠
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
									•			•					•	
		•		•	•				•			٠					•	٠
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
			•		•	•		•			•							•
•		٠	•	•	•	•		•	•		•	٠	٠	•	٠	•		0
			•	•		٠			•			•			•		•	٠
•		•		•	•		•		•	•		•		•		•	•	•
																		٠
		•			•				•			٠					•	٠
		•		•	•		•		•	•		٠			•		•	•
•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
			•		•	•			•		•	٠	•		•		•	٠
•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	٠	•	•	٠
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
												٠						
		•			•				•			٠					•	٠
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
		٠		•	•				٠		•	٠					•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
		٠	•		٠	•			٠		•	٠					٠	٠
		•	•	*	•	٠		•	٠	•	•	٠	•		•	•	٠	٠
•	•	•	•	•	•	•	•		•					•	•		•	•
•	•	•	•	•	•	•	•	•					•				•	•
		٠	٠		٠	•		٠	•		•				٠	•		
			٠	•	•	•	•		٠		•				•			
•	•	•	•													•		
												•					•	
		٠	•	•	٠	•	•		٠	•	•	٠	•	•			٠	٠
		٠	•	•														•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
			٠	•	•		•		٠			•			•	•	٠	٠
		٠		•	•	•	•		•						•		٠	٠
•	•	•	•	•	•		•	•	•	•	•	•	•		•	•	•	•