$\pi: X \rightarrow Y$ Lenna: A quotistat a Lindelist space is Lindelist. Consequence: If IT: X-> i is a quotiat mapa X is 2rd countable and Y is locally tlen Y 13 2rd countable, 2 nd court abe => Lindelsf =7 Y is Ludelsf + locally Eucliden ? => Znd courtable.

• •	•	•	•	•			•	•	•	•		•	•	•	•		•	
• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•			•		•	•	•	•	•		•
• •		•	•	•		•	•	•	•	•	•	•	•	•	•		•	•
	•	•	•	•		•	•			•		•	•	•	•	•	•	
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•
	•	*	*	•	•	•	•		*	•	•	•	•	*	*	*	*	
	•	•	•	•	•	•	•	•	•	٠		٠	•	•	•	•	•	•
		•	•	•		•	•	•	•	•		•		•	•		•	•
X .	•	•	•	•	•	•		•	•	٠	•	٠	٠	•	•			•
	•	•	•	•	•	٠	•	•		•		٠	•	•	•	•	•	•
		•		•		•	•	•	•		•						•	•
\square		1.	:	0				•		•		•	٠	•	•		•	•
!		, ,,			2		•	•		•			•	•	•	•		•
• •	•	•	•	•		•		•	•	•	•	•		•	•	•	•	•
	•		•	•		•		•		•		•	•	•	•			
• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
													•					
	•	•		•		•	•	•	•	•		•			•	•	•	•
		•	•	•		•	•	•	•	•	•	•	•	•	•		•	•
		•	•	•	•	•		•		•		•	٠	•	•	•	•	•
	•	•	•	•	•	•	•	•		٠		•	•	•	•	•		•
• •		•		•		•	•	•	•	•	•	•			•	•	•	•
						•						•	•				•	•
	•	•	•	•	•	٠	•	•	•	٠		•		•	•	•	•	•
	•	•	•	•		•		•	•	•	•	•		•	•		•	•
• •	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	
				•		•	•	•		•	•	•	•				•	•
	•	•	•	•	•	•	•	•	*	*	*	•		•	•	•	•	
• •	0	•	٠	٠	•	٠	•	•	•	٠	•	•	•	٠	٠	•	•	
• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
• •	•		•		•					•				•				
• •	•	•	•	•					•	•		•		•	•			
• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Pf of Lenna' Let 20,3 be an open couer of Y. Consider the sets $\frac{5}{2}\pi^{-1}(U_{\alpha})_{\alpha\in\mathcal{T}}^{2}$. Observe $\chi = \pi^{-1}(\chi) = \pi^{-1}(\chi) = \pi^{-1}(\chi) = \chi_{e,1}(\chi)$ and neuce we une an open cover of X. Suce X 15 Lindelöf ve can velue to a cou Subcover 3 Ti (Ux 30)

• •			•	•	٠	•	٠	•	•	•	٠	٠	•	•	•	•	•	•	
			•	•	٠	•	•	•	•	•	•	•	•	•			•	•	•
			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
• •		,	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
• •			•	•	•	•	•	•	•	•	•	•	•	•	•	•	*	•	•
			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
• •		•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	*	•
			•												•	•	•	•	
			•						•				•		•	•	•		
		,	•	•			•		•		•	•	•		•	•	•		
		,	•	•	٠	•	•		•	•	•	•	•	•	•		•	•	
	. ,			•	٠	•	•		•	•	٠	•	•	•			•	•	
		,	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•
• •				•	•	•	•	•		•	•	•	•	•				•	•
		,	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
		,	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
• •		,	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
• •		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	1		•	•			•	•	•		•	•	•	•	•	•	•	•	•
1		Ν																	
		.)													•		•		
					•		•				•	•			•	•	•		
			•	•	•		•		•	•	•	•	•		•	•	•		
			•					•	•				•		•	•	•		
		,	•	•			•	•	•	•	•		•	•	•	•	•		•
			•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•
• •			•	•	٠		•	•	•	•	•	•	•	•	•	•	•	•	•
			•	•	٠	•	٠	•	•	•	•	•	•	•	•	•	•	•	•
• •			•	•	٠	٠	٠	•	•	•	٠	٠	•	•	•	•	•	•	•
			•	•	٠	•	٠	•	•	•	٠	٠	•	٠	•	•	•	•	•
• •		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
				•	•	•	•	•	•	•	•	•	•	٠	•		•	•	•
N	-9	h	X	2			•		•			•							•
		,																•	
													•						
																•			
				•	•		•		•		•		•	•				•	
				•	•		•	•	•	•	•		•	•	•		•	•	
				•	•	•	•	•	•	•	•	•	•	•		•		•	•
			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

 $\pi(\mathcal{L}) = \pi(\mathcal{U}\pi^{-1}(\mathcal{O}_{\mathcal{K}_{\mathcal{K}}}))$ Ver JUXE) Sujætud $\pi \left(\pi^{-1} \right)$ k k Sorjechic Ogk. 50 202 3 15 01 commbre sabeoner.

Connectnes S: Def: Let X be a top space. A separation of X is a pair of disjoit nonempty open sets U, V such that U U = X. A space is disconciled A it admits a separation, otherwise it is connected. U= 22EZ: 2713 E.g. ZSR V= 22EZ: 2413 6 connected, $Q \qquad U = Q \cap (-\infty, \pi)$ $V = Q \Lambda (H, \infty)$

Prop IR is connected Pf: Suppose $U \subseteq \mathbb{R}$ is open, $U \neq \phi$, $U \neq \mathbb{R}$. Job: show UC is not open. Pick XE U and puck YEU. We will assure XET The cose YCX is proved solutarly. Let $W = Z W \in U^{C}$: X < W. Obsence: V7¢ as YEW and Wis bounded belan by X. Hence W adrits an infimm V.

From elementary anlalysis each set [", u+E) intosets W. In particular (V-E, V+E) intersectes W for enli 670 and therefore V& Int (U). But U is open, so VEV. Since v = influ, the entire internal [x, v) lies on U. Here ay interval (V-E, V+E) intersects U al love v& Int (US), Since veU, U is not apar If X is have anorphic to Y and X is carreded 30 i3 Y, => concertors is a topologuea (property

Cor: upon intervuls in IR are connected. Prop- If X is connected and f: X-si is continuous and sorjective then Y is connected. "The continuous may of a connected set 6 connected" PF: Suppose f: X-7 is continues al l'is disconnected. Job: Show X is disconneded. Let U, V be a separation of Y. (onsuder f'(0), f'(V). These care: • opour contanuity

· nonempty surjectivity • a courted X X = f'(Y) = f'(UUV)So Ney fem a sepanter of X. [-1, 1] is connected because it is sin (R) Remark: A space X is concided if the only subjects of X that we back open and closed are X ad \$.

Prop: If A = X is connected and of Uand lisjount open sets in X sech that AS Man either AS U or ASV. PF: If ANV al ANU are Loth nonemp then they form a separat as of A.

			• •	•	•	0	•	•	•	•	•	•
	0C		• •	•	•	•	•	•	•	•	•	•
		• •	• •	•	•	•	•	•	•	•	•	•
$\left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right)$	117		• •	•	•	•	•	•	•	•	•	•
U	V		• •	•	•	•	•	•	•	•	•	•
		• •	• •	•	•	•	•	•	•	•	•	•
		• •	• •	•	•	•	•	•	•	•	•	•
			• •	•	•	•	•	•	•	•	•	•
				•	•	•	•		•	•		•
				•	•	•	•	•	•	•	•	•
	• • •	• •	• •		•		•	•	*	•	•	*
			• •	0	•	0	•	•	•	•	•	•
		• •	• •	•	•	•	•	•	•	•	•	•
		· ·	• •		•	•	•	•	•	•	•	•
			• •	•	•	•	•	•	•	•	•	•
		• •	• •	•	•	•	•	•	•	•	•	•
		· ·	• •	•	•	•	•	•	•	•	•	•
				•	•	•	•	•	•	•	•	•
					•	•	•	•	•	•	•	•
			• •	•	•	•	•	•	•	•	•	•
• • •	• • •	• •			•		*	•	*	•	•	*
			• •	•		0	•	•	0	•	•	•
	• • •	• •	• •	•	•	•	•	•	•	•	•	•
		· ·	• •	•	•	•	•	•	•	•	•	•
		••••	• •	•	•	•	•	•	•	•	•	•

Prop: Suppose 312 au collection de con $\Lambda A_{\alpha} \neq \phi$ then 4 3 Co XEI (A union at connacted rets with a poort in is connected

		· ^					•					•	•	•	•	•
Λ	ectr	J	•		0		•					•	•	•	•	•
	• •	• •				•••	•			•	•	•	•	•	•	•
1	ne	9	d	6		· ·	•	•	•	•	•	•	•	•	•	•
		· ·	•	•	•	· ·	•	•	•	•	•	•	•	•	•	•
			•	•	•	• •	•	•	•	•	•	•	•	•	•	•
•	C	0 0 1		12	1	· ·	•	•	•	•	•	•	•	•	•	•
	• •	· ·	•	•	•		•		•	•	•	•	•	•	•	•
	· ·	· ·	•	•		· ·	•	•	•	•	•	•	•	•	•	•
	• •		•						•	•	•	•	•	•	•	•
	· ·	· ·		•		· ·	•		•	•	•	•	•	•	•	•
		••••		•	•	• •	•	•	•	•	•	•	•	•	•	•
	, , , ,	••••	•		•	• •	•	•		•	•	•	•	•	•	•
	· ·	· ·	•			· ·	•	•	•	•	•	•	•	•	•	•
	, , , ,	· ·	•				•		÷	•	•	•	•	•	•	•
	· ·	· · ·	•	•		· ·	•	•	•	•	•	•	•	•	•	•
	· ·	· ·	•	•	•	• •	•	•	•	•	•	•	•	•	•	•
	· · ·	· · ·	•	•	•	· · ·	•	•	•	•	•	•	•	•	•	•

