Previoably on Math 651.... · Second countable spaces almit a countable basis => first countable => sequence arguments => separable (eduit a countable danse subset) => Lindelöff (every cover has a countrable subcover) · Marifolds (each point has a robhd ~ R^) - Locally Euclidean of dumension in - Husdorff - 2rd coontable (May examples asserted, but few preads)

· Subspace Topology AEX ZA=ZUNA: Uis open MXZ - If X is Haussliff so is A - If X is 2nd counterly so is A - If X is a netric space, the subspace top + netric top on A agree in: A -> X is always continues Infact: if & is any topology on A and in is ats (A, 2) -> X then VACE 2. It is the coarsest topology for which it is containers.



Big Deal: Characterstic Properly of Subspace Topolog: The function of is continues iff EAOF is. in the terms of $Z \longrightarrow A$ "A function is continuos into a subspace il it is continuas into the unbient space." Two eary facts 1) If f: X->Z is its and ASX Then $f|_A: A \rightarrow Z$ is ds, (restriction of domain) fla = fo GA

z) If $f: Z \rightarrow X$ but $f(Z) \leq Y$ they is at (restriction of codeneus) f: そうイ はちち f is 25, 50 f is F 7 X úy (Uk topically dait decorate ...) 2

What do I mean by "choracteriztic property"? It's a property that defines the topology abstractly. We say a topology on A = X satisfies the cher property f vlerer f: Z > A is a map, Then fis its of F= foig is. $\begin{array}{c} \widehat{f} & \widehat{f} & \widehat{f} \\ \widehat{f} & \widehat{f} & \widehat{f} \\ \widehat{f} & \widehat{f} \\ \widehat{f} & \widehat{f} \end{array}$ Claim: A topology on A that satisfies The characteristic properly of the subspace top is the subspace top. Note:

PF: Lot As be A with the subspace dep ad let Ar le A with a rulan topology saturdy give dan prop. I wat to show Idsr: As >> Ar Idrs: An > An ac contours, mullich $(il:(Z,Z_{1})) (Z,Z_{2}) (3)$ ots, $fl (Z_{2},Z_{2})$ ase the top days are identical! To, X Jian Jian Since Idry is de => Idry: Ar -> X is ots => (1,: A, > X 15 cts. $A \xrightarrow{} A_r$ Ilrr

Since it 13 05 50 13 Ilog Since it As is ats Prep: Suppose X is a top space ad The Subspice topologies on A (ounde. Pf: Let Ap and Ax denote the two topolgues

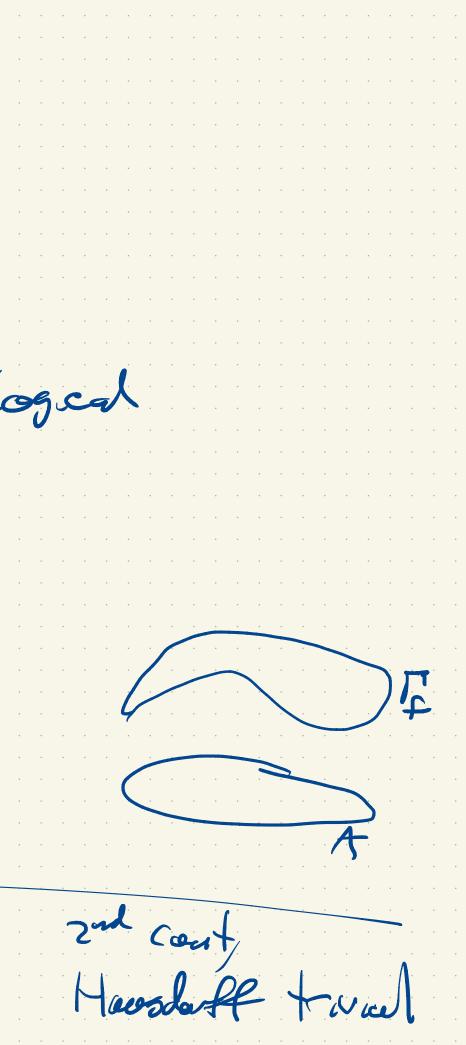
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
0		0					•		•					•			•		
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•		•		•	•	•		•			•	•	•	•			•		•
÷	٠	0	٠	٠	•	•	٠	٠	•	٠	•	•	٠	٠	٠	•	•	•	0
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•			•	•	•	•				•	•	•	•	•	•	•		
	•		•	•	•	*	•		•	•	•	•	•	*	•	•	*	*	*
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•		•	•	•	•				•	•	•	•	•	•	•		•
5	ัก			([^] <	5	*		5	J					*	•	•	*	•	•
•		•	•		•	•	•	•	•	.	V	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•										•	•	•				•		
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•
0	٠	0		٠		٠				0		•	•		•	•			0
· · (•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
. <	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
0	٠	0		٠			٠				•	٠	•	٠	٠	٠	٠	٠	0
A		r rc	20)			B	• •	•	0				•	•	•	•
	, r)	. (•	•	. ' V		. 1			:)			•	•	•	•
•		٠	•								•		•						٠
	•	0	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•		•	•				•	•	•					•	•	•	•		•
			•	•	•	•		•				•			•		•		
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

We'll show that AB satisfies the due preper $Z \xrightarrow{f} A_{B}$ f is its ET f is by cher property applied to ACDB. Fis its iff fisby dur propedy BC>X, So F 13 05 iff f 15. Def A map f: X-> 7 is a top enhading, & it f is a honeonorphism offits its unic. (w/ subspace) => injecture E) (f) not a honeo.

Intertue Super common construction. But (x,y) M 2) TT: Runk > RK 3 CT5 (Exercises

•		٠	• •	٠	•	٠	•	٠	٠	•	٠	٠	٠	0	٠	•	
•	•			•	•	•	•	•	•	•	•	•	•	*	•	•	•
	٨é	4		•	•	•	•	•		•	•		•	0	•	•	•
							٠		٠	•	٠	٠	٠	٠	٠		
	k	·	· · · ·		•	•	•	•	•	•	•	•	•	•	•	•	•
				.0.	•	٠	٠	٠	٠		٠	٠		٠	٠	٠	
•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•
		*	• •	*			•	•		•			•		•		
	•	•	• •	•	•					•			•	•	٠	•	
•	•	•		•	•	•	•	•	•	•	•	•	•	•	*	•	•
			• •			•	•	•									
•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	
						•	•	•			•		•			•	
٠		•		٠		٠	٠	٠	٠	٠	٠	٠	•	0	٠	٠	•
•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•
٠	•	•	• •	٠	٠		٠	٠	٠	٠	٠	٠	٠	0	٠	٠	•
•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•
				٠											٠	•	
				•		•	•	•	•	•	*	•	•	۰	•	•	
5	VC	11	C	•	•	•	•	•	•	•	•	•	•	•	•	•	
1		•		٠		•		•	•	•	•	•	•	٠	•		
	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•
		•			•	٠	•	•	•		•	•		٠		•	
	•	٠			•						•		•	۰	٠		
	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•
		•															
•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•
				٠						•					•	•	
		•		٠	•	•	•	•			•	•	•	•	•	•	•
					•		•	•		•					•		
		•									٠			٠			
	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•
					•	٠		٠			٠			٠			
		•	• •	٠	•		•			•			•	0		•	•
	•	•	• •		•	•	•	•	•	•	•	•	•		•	•	•

A G R° subspace f: A-> RK Graph of f $\Gamma_f = \mathcal{Z}(x, f(x)) : x \in A\mathcal{Z}$ Then F: A>Tf XI>(x,f(x)) 13 a topological onkeldneg injectue (oburges) ats (metric space orgunate) $Pf: \Xi(x) is$ Invoge is TI: RATK -> RK which is do. Claun: 5'is a monifold. $S^2 = 2 \times C R^{n/1} : |x| = 13$



 $S_{+}^{*} = 2 \times E S^{*} = \times_{n+1}^{*} > 0 3$ $U = \Pi_{n+1} (0,00) 50 Ben,$ $S_{\pm}^{\Lambda} = 0^{\Lambda} S_{\pm}^{\Lambda} s_{0} is open in S_{\pm}^{\Lambda}$ $F: B \rightarrow R \quad x \rightarrow JI - |x|^2 \quad is ots (calc TII)$ Stis If so is homeonorphic (as a subspice of R^{nr1} ad have aboat S) to B. $S' = 2 \times E S' \times N_H \subset O_3$ is homeomorphic to S_+^n

via R(X, XAFI) > (K, -XAFI) which is ots IR"> R"+1 > R"+1 ind have 0/80 Surl > IR"+1 > Rut (and $S^{nH} \rightarrow S^{n+1}$ Most points in S' now covered. (only hose w/ X1+, 70) Exercise: $(x_1, x_2, \dots, x_n, x_{n+1}) \rightarrow (x_1, x_2, \dots, x_{n+1}, x_n)$ descends to homeonorphism S'-> S'