Observe: The boundary of A is closed.

There is another w to express this. $\overline{A}^{c} = E_{x+}(A) = 7$ $\overline{A} = (E_{x+}A)^{c}$ $\overline{A}^{c} = E_{x+}(A^{c}) = 7$ $\overline{A}^{c} = E_{x+}(A^{c})^{c}$

 $S_0: \partial A = \overline{A} \cap \overline{A^c}$

 $= E_{x+1}(A)^{\circ} () E_{x+1}(A^{\circ})^{\circ}$ $= \left[E_{x+1}(A) \cup E_{x+1}(A^{\circ}) \right]^{\circ}$ $= \times \left(E_{x+1}(A) \cup E_{x+1}(A^{\circ}) \right)$

More over: $x \in E_{x} + (A^{c}) \leftarrow Z = U \in \mathcal{V}(x), U = (A^{c})^{c}$

⇐ ∃ U ∈ V(x) U ∈ A

ET XE IN(A).

5. $\partial A = X \left(E_{A}(A) \cup I_{A}(A) \right).$

What is the boundary of QER? Q.

(Every point of TR 15 a context point of Q rad

Text: prop 2.8 contains a number of related interclationships, which are left as exercises. You must prove these before Using.

Det x e X is a limit point of A E X, f for every U E D(x), UNA contains a point aside from x.

(Note x may or may not be in A)

Exercise: Every limit point of A is a content point of A.

If X&A, X& a limit point of A Contact point of A.

What's left over? What are contact points that are not limit points. Suppose & is one of these. XEA then. And I UE 26 UNA= Ex3.

Def. We say x & A is an isolated point of A · テヨ UEン(上), UNA=3×3. Exercise: The set of points of A is the disjoint union of the limit points of A and the isoluted points of A. E) P stated Exercise: A set A is closed iff it contains its limit points. (hint contect points not in A must be limit points)

Def: A set A = X is dense in X if A = X. E.g. $Q \in \mathbb{R}$ Every point of X is a contact point of A. Every point of X is adjucent to the points of A. (A is new every thirs) Continuity. Recall Def: Lot f: X-si be a prop between metric spaces Then I is continuans if whenever xn->x in X, $f(v_n) \rightarrow f(v) \in V$

Prop: f:X >Y is cts as it is cts!

Pf: Suppose cts' and suppose py -> p in X. Let $\varepsilon 70$. Find $\delta s_0 f(B_{\delta}(p)) \in B_{\varepsilon}(f(p))$. Find N so n= N=> pn ∈ Bs (p). Then is now, $f(p_n) \in f(B_s(p)) \in B_e(f(p))$. $S_{\circ} f(p_n) \longrightarrow f(p).$

Now suppose not ots! So there exists we X, and ESO s.J. for all S>O, f(Bs(p)) & Be(F(p)). For each of pick pp = By (x), f(pn) & Bz (f(p). So $p_n \rightarrow p$ but so $f(p_n) \neq f(p)$. So not cts.

Third draceterzation.

Def: fiX = Y, is the other $U \subseteq Y$ is open $f^{-1}(O) \subseteq X$ is open. Recall: $f'(w) = \xi_x: f(x) \in W^3$. $f(A) \subseteq W \iff A \subseteq f'(W)$ Prep: cts'es cts" Pf: Suppose cts'. Let UEY be open. Let $p \in f'(U)$. Pick $\varepsilon > O$ with $\beta_{\varepsilon}(f(p)) \leq U$. Pick & with $f(B_{\varepsilon}(\rho)) \in B_{\varepsilon}(f(\rho))$. So $B_{\mathcal{S}}(p) \leq f^{-1}(B_{\mathcal{E}}(f(p))) \leq f^{-1}(U)$. So $f^{-1}(U)$ is appen.

Now suppose cts". Let pEX and consider Be(flp), which is open. Now pe f'(U), which is agen m X. So the exists s>> ad BSP) = f"(U).

So S is cts!

So there is a churcherization of continuity for metric spaces solely in terms of open sets (cts").

Def: Let f: X->Y be a map between top spaces. Then I is continuous & for every U open in y f'() is open in X.

1) Every map that was continuous before your kener the defaultion of topology. Eig: 2) Constant functions. $(f^{-1}(0) = \begin{cases} X \\ \phi \end{cases})$ 3) $Id: X \rightarrow X$ (f'(i) = 0). 4) A composition of ctk functions X = Y = X T $(f \circ g)^{-1}(0) = \{x \in X, g(f(x)) \in U\}$ $= \{x \in X : f(x) \in 5^{-1}(0)\}$ = $2 \times \in X; \quad v \in f^{-1}(g^{-1}(v))$ = $f^{-1}(g^{-1}(v)), p^{-1}(v), open,$