See **Rules** on following page.

- **1.** Suppose $q: X \to Y$ is a quotient map and that each fiber of q is connected. Show that if Y is connected, then so is X.
- **2.** A subset A of a topological space X is said to be nowhere dense if Int $\overline{A} = \emptyset$.
 - a) Let U be an open subset of a topological space. Prove that ∂U is closed and nowhere dense.
 - b) Let V be a closed and nowhere dense set. Show that V is the boundary of an open set.
- **3.** Let f and g be continuous maps from a topological space X to a Hausdorff space Y. Suppose f = g on a dense subset of X. Prove that f = g.
- 4. Exercise 4.38
- 5. Let *G* be an algebraic group. We say that *G* is a **topological group** if in addition *G* is a topological space such that the multiplication map $m : G \times G \to G$ and the inversion map $i : G \to G$ defined by $m(g,h) = g \cdot h$ and $i(g) = g^{-1}$ are continuous.
 - a) Suppose *G* is an algebraic group and a topological space. Show that *G* is a topological group if and only if the map $f: G \times G \to G$ defined by $f(g, h) = gh^{-1}$ is continuous.
 - b) Let G be a topological group and let H be a subgroup. Show that \overline{H} is a subgroup. Hint: that map f from the previous part is continuous.
- 6. Suppose the spaces X_{α} , $\alpha \in I$ are all connected and nonempty, and let *a* be a point in $X = \prod_{\alpha \in I} X_{\alpha}$.
 - a) Given any finite set $K \subset I$, let X_K denote the subspace of X where $x_\alpha = a_\alpha$ for all $\alpha \notin K$. Show that each X_K is connected.
 - b) Show that $Y = \bigcup_K X_K$ is connected.
 - c) Show that $\overline{Y} = X$ and conclude that X is connected.
- 7. Let X be a topological space. The suspension of X, denoted by ΣX , is the quotient of $X \times [-1, 1]$ where all points of the form (x, 1) are identified, and all points of the form (x, -1) are identified. Determine, with proof, a familiar space that is homeomorphic to ΣS^n .
- 8. Lee Problem 4-4
- 9. Lee Problem 4-5
- **10.** Lee Problem 4-11

Rules and format:

- You are welcome to discuss this exam with me (David Maxwell) to ask for hints and so forth.
- You are not permitted to use any form of AI to assist you in any part of this exam.
- If you find a suspected error or misprint, please contact me as soon as possible and I will communicate it to the class if needed.
- You my not discuss the exam with anyone else until after the due date/time.
- You are permitted to reference Lee or any other topology text you like. If you use another text, you must cite it when you use it.
- You may not consult any internet resources, including search engines.
- Each problem is weighted equally.
- The due date/time is absolutely firm.
- The problem session on March 5 will be a hints session.