Name:

1. Define what it means for the vectors x_1 , x_2 and x_3 to be linearly dependent. Your definition should involve the phrase "there exist".

2. Give an example of three **nonzero** vectors x_1 , x_2 and x_3 in \mathbb{R}^3 such that the set of three vectors is linearly dependent. **Justify** your claim. For full credit, each vector x_i must be different from the other two.

3. Consider the vectors

$$x_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \quad x_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \quad x_3 = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$$

Notice that

$$2x_1 + x_2 - x_3 = 0$$

and that

$$x_1 + 2x_2 + x_3 = \begin{bmatrix} 3 \\ 6 \end{bmatrix}. \tag{1}$$

No work for you so far! But now: find a solution of

$$\beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 = \begin{bmatrix} 3 \\ 6 \end{bmatrix}$$

that is **not** the solution $\beta_1 = 1$, $\beta_2 = 2$, $\beta_3 = 1$ from equation (1).