This is a class called linear algebre.
We have seen no algobra!
3x + 2y - z = 5
- X 4 7 4 2 2 2
$2 \times + 2 + 3 = 9$
Con we solve this? Is the a solution? How may?
Let me refine this system
$\begin{pmatrix} 3 \\ -i \\ z \end{pmatrix} \times + \begin{pmatrix} 2 \\ i \\ 2 \end{pmatrix} \gamma + \begin{pmatrix} -i \\ i \\ 3 \end{pmatrix} z = \begin{pmatrix} 5 \\ 2 \\ q \end{pmatrix}$
Solving the system of equations 13
11e sure a5:
Find a linear combination of the vectors
$\begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \\ 3 \end{pmatrix} \qquad \text{Art equab} \begin{pmatrix} 5 \\ 2 \\ 1 \\ 3 \end{pmatrix}$

Now let me speuk more senerically. Given vectors X1, Kz, X3 and 7, Con we find BI, Bz, B3 such that $\beta_1 \times_1 + \beta_2 \times_2 + \beta_3 \times_3 = \gamma$ 2 Key property: The vectors x1, x2 and x3 are linearly dependent if there are numbers Big Bz and Bz with $\beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 = O.$ Otherwise they are liverly relapondent. (I.e. the only wring Bixi + Bz + 2 + B3 × = 0 is the dorious one: $\beta_1 = \beta_2 = \beta_3 = 0$).

Liver independence is going to be a cruccial property related to solving systems of equentions. $x_{1} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad x_{2} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad x_{3} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ E-g These vectors are linearly dependent. $\beta_1 = -1, \beta_2 = 1, \beta_3 = 1$ $-\chi_{1} + \chi_{2} + \chi_{3} = 1$ Graphizally: 142 Intuitive: They are linearly dependent it one is a liver company of the others

In this case X1 = X2+ X3 Suppose we try to solve $\beta_1 \times 1 + \beta_2 \times 2 + \beta_3 \times_3 = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$ $\beta_{1}\begin{pmatrix}1\\0\\0\end{pmatrix}+\beta_{2}\begin{pmatrix}0\\1\\0\end{pmatrix}+\beta_{3}\begin{pmatrix}1\\-1\\0\end{pmatrix}-\begin{pmatrix}2\\1\\3\end{pmatrix}$ $\begin{pmatrix} \beta \\ i \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ \beta_2 \end{pmatrix} + \begin{pmatrix} \beta_3 \\ -\beta_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$ $\beta_1 + \beta_3 = 2,$ Uh sh! B2-B3 = $\bigcirc = 5$ (3 opudions 3 unknows, no solutions) No solution OK, fure. Suppose the RHS 3 (2)

$\beta_1 + \beta_3 = 2,$ $\beta_2 - \beta_3 =)$
I can see a solution: $\beta_1 = 2$, $\beta_2 = 1$, $\beta_3 = 0$ works. Great! But something's still not right.
$\beta_1 = 2 - c$ $\beta_2 = 1 + c$ is a solution $for all choices of$ $\beta_3 = c$ $he number c.$
Like $c = 7$ $\beta_i = -5$ $\beta_z = 8$ $\beta_z = 7$
$\beta_{1} + \beta_{3} = -5 + 7 = 2, \checkmark$ $\beta_{2} - \beta_{3} = 8 - 7 = 1 \checkmark$
So there are infinitely many solutions. Both atthese donteauss stom from ty x2, x3

being linearly dependat. You want to think of linear dependence as lad, eosy exaple: EI, Cz ad ez u R³ are liverly independent. Why? Need to show that if $\beta_1 e_1 + \beta_2 e_2 + \beta_3 e_3 = 0$ then $\beta_1 = \beta_2 = \beta_5 = 0$, $\beta_1 e_1 + \beta_2 e_2 + \beta_3 e_3 = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix}$ so it this adds up to O, p=0 foz=) $\beta_z = 0,$ We an jost verd it off

 $x_{i} \begin{pmatrix} 2 \\ 3 \end{pmatrix} x_{i} \begin{pmatrix} -1 \\ 5 \end{pmatrix}$ or likely independent, Sippose Buipet = O $2\beta_1 - \beta_2 = O$ $3\beta_1 + S\beta_2 = O$ S_{0} $3\beta_{1}$ + $10\beta_{1} = 0$ $S_0 = \beta_1 = Z_1 \beta_1$ $5_{0}(3\beta_{1}=0)$ So B=0. So b=2A=0, How do year show vectors tistes -, that (nearly melependent? It's hard in severally Low show that if you want to solve Bixik Bixit - + Bnxn = O $fl_{m} \quad \beta_{i} = \beta_{2} = \dots = \beta_{n} = 0. \quad Perced.$