Last example Suppose we want to predict annual income of a based on the following Finish HS? yes/no foncos bachelor? yes (no? finish sral? 4051 not (ruber age over 20 i i i, i i, i 0 i / i7i) 37 years old

							•	•	•	•	•		•		•		
					•	•		•	•		•	•		•	•	•	•
٠	٠					٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	•
•	0			•	۰	•	•	•	٠	•	•	•	•	•	•	•	•
•	•				•	•	•	•	•	•	•		•	•	•	•	
•	0					٠								٠	•		
	0				•			•	•	•	•						
	Λ°ρ		~	کر	•			•	•		•		•		•	•	
	2	/ 2		~J		•	•	٠	٠	•	•	•	•	•		•	•
ŀ		• •			•	•	•	•	•	•	•	•	•	•	•	•	•
•	•			•	٠	•	•	•	•	•	•	•	•	•	•	•	•
•				•	•	•	•	•	•	•	•	•	•	•	•	•	•
													•				
					٠				•								
•					٠	•	٠	٠	٠	•		•	•	•		•	
) _		-		C	5				•	•	
9	-Galler	5	. •.	1.					•			•	•	•		•	•
٠	0			•		٠	٠	٠	٠	٠	٠	•	٠	٠	•	•	•
٠	0			•	•		•	٠	٠	•	٠	•	•	٠	•	•	•
•					•	•	•	•	•	•	•	•	•	•	•	•	•
•	•				•			•		•	•		•	•		•	
	٠							•			•				•		
					٠			•	٠	•	•		•				
•	0			•	٠			•	•	•	•		•	•	•	•	•
				•		•	•	•	•	•	•	•	•	•		•	•
•		• •		٠	٠	•	•	•	٠	•	•	•	•	•	•	•	•
•				•	•	•	•	•	•	•	•	•	•	•	•	•	
													•				
					٠												
					٠				•								
•													•		•		
						•		•	•		•			•		•	
	•					•	•	•	٠	•	•	•	•	•	•	•	
•	•				•	•	•	•	•	•	•	•	•	•	•	•	
•	•			•	•	*	•	•	•	•	•	•	•	*	•	•	•
٠	•			•	4	•				•			•	•	•	•	•
	٠																

ý prodicted income par metes of medel: V number $b = (b_{1}, b_{2}, b_{3}, b_{4})$ tle modo (ner regressia) $y = b^T x + V$ = b, x, + b, x, + b, x, + b, x, + predication X. regressors $\left[\begin{array}{c} 1\\ -1 \end{array}\right] = \\ \\ \\ \\ \end{array}$ b, additional incare for lung carped of HS.

> expected more of 20 16 with ro HS diploma Norms + distance (3,7)How Sar is B XERY Gren any vector

			•		•	,	•		•			• •			•			•
			•			,												
			• •															
			•	•	•	•	• •		•	•	, ,	• •	•	•	•	•	•	•
			• •		•		• •		•			• •		•	•	•	•	•
			•		•		• •		•			• •		•	•	•	•	•
						,				,								
	• •		•		•	•	• •		•			• •	•	•	•	•	•	•
			•		•	,	• •		•			• •	•	•	•	•	•	•
			•		•		•		•			•			•		•	•
					•		•		•			• •		•				
						,				,								
	• •		• •	•	•		• •		•	•		• •	•	•	•	•	•	•
			•		•	•	• •		•	•		• •	•	•	•	•	•	•
			• •		•		• •		•			• •		•	•	•	•	•
						,												
	• •		•	•	•	•	• •		• •			• •	•	•	•	•	•	•
			•		•	•	• •		•			• •	•	•	•	•	•	•
			•		•		• •		•			• •	•	•	•	•		•
			• •		•		• •		•			• •		•	•	•		
						,												
	• •		• ·	•	•		• •		•	•		• •		•	•	•	•	•
			•		•		• •		•			•	•	•	•	•	•	•
			•		•	,	•		•			• •		•	•	•	•	•
			•		•		• •		• •			• •				•		
	<u>.</u>	1)			• •											
Λ			- C		•		• •		•	,		• •	•	•	•	•	•	•
	5		· _		•		• •		•			• •	•	•	•	•	•	•
					•		• •		•			• •	•	•	•	•	•	•
			•		•		• •		•			• •		•		•		•
							• •											
			•		•	•			•			• •	•	•	•	•	•	•
١.			•		Λ.		• 1		•			•		•	•	•	•	•
	2		•		V	4	-/	0		0	2	• •	•	•	•	•		•
ť	×		•	0	$\mathbf{\lambda}$		D		r	C		• •	•					
							• •											
							•		•			•						
	• •		•		•		• •		• •			• •		•	•	•	•	•
			•		•		• •		•			• •		•	•	•	•	•
							•											
												-					•	
			•		•		• •		•			• •	•	•	•	•	•	•
			•		•		• •		• •			• •			•		•	•

 $\| \times \| = (x_1^2 + x_2^2 + x_3^2 + \dots + x_N^2)$ $[2 + 2^{2} + (2 + 4)]$ 1-16 C F4+1 22 Preparties

	•	•	•	•	•		•	•	•	•	•	•	•		•		•	•
•	•	•	•	•	•		•	•	•	•	•	•	•		•	•	•	•
•	•		•	٠	•		•	•	•	•		٠	•		•			•
	•	•		•		•	•		•	•		•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•		•	•		•	•		•
٠		•				•	•		•					•		•		
	•		•	•			•		•	•	•	•	•		•		•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•		•
•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•		•
	•	•		•	•	•	•		•	•	•	•	•	•	•	•		•
٠	•	•	•	0	•	•	•	•	•	•	•	•	•	•	0	•	•	•
•	•	•	•	•	•					•	•	•	•	•	•	•	•	•
٠																		
•	•		•	٠	•	•	•	•	•	•	•	•	•		٠		•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•
*		•	•	•		•						•		•	•	•		•
٠			•	•								•			•			
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠		•	•
•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	٠	0	٠	•	•	٠	•	•	•	0	٠	•	0	•		
		•	•	•						•		•	•		•	•		•
•	•	•		•	•	•	•		•	•	•	•	•		•		•	•
	•		*	•	•	•	•	•	•	•	•		•		٠			
	•	•		•		•	•		•	•	•	•		•	•	•	•	
•	•	•	•	•	•		•	•	•	•	•	•	•		•	•		•
•	•		•	•	•	•		•	•	•	•	•	•		•			•
	•			•			•			-		•	•	•	•	•		•
	/		•	•	X		_		· ()	•	•	•	•		•	•
•	•		•	•	•		•	•	•	•	•	•	•		•		•	•
	•	•	. 1						•		•	•		•	•	•		
	>		•		\checkmark				-	\hat{c}		•	•		•		•	•
	•	•	ĺ			11	•		•		•	•	•	•	•	•	•	•
				•			•		•			•			•			
	•	•	•	•		•	•		•		•	•		•			•	
•	F				•	•	•		•	•	•			•	•	•	•	•
	<u>_</u>	-	1		•		•	X		-			ノ		•		•	
	•	•	•	٠	•		•	•	•	•	•	•	•		٠			

 $\| X \| = (x_1^2 + x_2^2 + x_3^2 + \dots + x_N^2)^{1/2}$ $\| \overline{7}_{\chi} \| = \left((7_{\chi_1})^2 + (7_{\chi_2})^2 + \cdots + (7_{\chi_1})^2 \right)^{\ell_2}$ $= \left(\frac{7^{2} \chi_{1}^{2} + 7^{2} \chi_{2}^{2} + \cdots + 7^{2} \chi_{n}^{2} \right)^{1/2}$ $= \left(\frac{7^2}{2} \left(\chi_1^z + \cdots + \chi_n^z \right) \right)^{\frac{1}{2}}$ $= \frac{1}{2} \left(\frac{1}{2} \right)^2 \left($ $\left(\alpha^{z}\right)^{1/2} = \left|\alpha\right)$ $= 7 \| \times \|$

 $\|\alpha X\| = \|\alpha\|\|x\|$ R C & A+B $||_{X+Y}|| \leq ||_{X}|| + ||_{Y}|$ Triangle inequality -X

XII is called the Eaclideen length or norm $\| (X) \|_{1} = \| (X_{1} \|_{1} + \| (X_{2} \|_{1} + \| (X_{1} \|_{1} + \| (X_{2} \|_{1} + \| (X_{2$ $x = (1, 1, 0, 17) \longrightarrow (1, 1, 0, \frac{17}{20})$ $\| \| \| = \left(|^2 + |^2 + 0^2 + |^2 \right)^{1/2}$ See text 3,28

 $\| 1_{y} \| = (|^{2} + |^{2} + - + |^{2})^{2} = 0^{y}$ 5 This tells you about the size of Re elevents & the vector and the renter of entries (the domaision) (Z6, Z1, Z5, 19, 30, -.., 4Z) $rms(1n) = \frac{\sqrt{n}}{2} > 1$ $vmS(\chi) = ||\chi||$

rms voot men sque typical size (in absolute value) entries à

•	•	٠	•	•	•	•	•	•	•			•	•	•	•		•	•
																	•	•
	•	۰	•										۰	•				•
			٠									٠		٠				
) ·		- 1														
	-{	/			1													
E	\mathcal{H}				1.2	2												
.0		•		່ງ				•										
								•										
	•	•	•	•	•		•			•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
·	•	٠	•	•	•	·	•	•	•	•	•	•	٠	•	•	•	•	•
•	•	٠	•	•	٠	•	•	•	•	•	•	•	٠	•	٠	•	•	•
•	•	•	•	*	٠	•	*	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	٠	٠	•	•		•	•	•	٠	•	•	•	•	•	•
•	•	•	•	•	·	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	٠	•		٠	•	*	•	•	•	•	•	٠	•	•	•	•	•
•	•	٠	•	•	•	•	•	•	•	•	•		٠	•	٠	•	•	•
•	•	٠	•	•	•	•	•	•	•	•	•	•	٠	•	•		•	•
•	•	٠	•	٠	٠	•	٠	•	•	•	•	•	٠	•	٠	•	•	•
•	•	•	٠	٠	٠	•		•	•	•	•	٠	•	٠	•	٠	•	٠
	•	•	•	•	٠	•	•		•	•		٠	•	•	•	•	•	•
	٠	٠	•	•	•	٠			•		•	•	٠	•	•	•	•	•
•	•	٠	•	•	•			•	•	•	•	•	٠	•	•		•	٠
•	•	•		•	•	•	•	•	•	•	•	•	•		٠		•	•
٠	•	٠	•	٠	٠	•	•	٠	•	•	•	•	٠	٠	٠	•	•	٠
	•	•	٠	•	٠	•	•		•	•		٠	•	•	•	•	•	•
	•	٠	•	•	•		•					•	٠	•	•	•	•	•
•	•	٠	•		•	•		•	•	•	•		٠	•	٠		•	٠
	•	٠	•	•	٠		•			•		٠	٠	•	•	•	•	٠
•	•	•	•	٠	•	•	•	•	•	•	•	٠	•	•	•	•	•	•
•	•	·	•	•	•	•	•	•	•	•	•	•	·	•	•	•	•	•
•	•	•	•	•	•	•			•	•		•	•	•	•	•		•
•	•	•	•	•	•	•	٠	٠	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•		•	•			•	•	•	•	•		•
	•	•	•	•		•	•		•			•	•		•	•	•	•
	•		•									•						•