A furction	$f: \mathbb{R}^n \longrightarrow \mathbb{R}$ "from \mathbb{R}^n to \mathbb{R} "
	even if $f(x_{+\gamma}) = f(x) + f(y)$ $\forall x_{1\gamma} \in \mathbb{R}^{n}$ $f(\alpha x) = \alpha f(x)$ for $\alpha \in \mathbb{R}$ $x \in \mathbb{R}^{n}$
Min example	f(1,0) = 1 $f(1,0) = 1$ $f(1,0) = 1$ $f(1,0) = 1$ $f(1,0) = 1$ $f(1,0) + f(1,0)$
Example E	$f(x_{1},y_{1}) = 3x - 4y$ $f(x_{1},y_{1}) + f(x_{2},y_{2}) = 3x_{1} - 4y_{1} + 3x_{2} - 4y_{2}$ $= 3(x_{1} + y_{2}) - 4(y_{1} + y_{2})$
· · · · · · · · · ·	$= - \left(\left(z_1 + z_2 \right) \right)$

For you: $f(\emptyset(Z)) = \infty f(Z)$
E.g. $a \in \mathbb{R}^n$, fixed
$f(x) = a^T x$ $(x \in \mathbb{R}^n)$
$f(x+y) = a^{T}(x+y)$ $= a_{T}(x+y) + \cdots + a_{T}(x+y)$
$= a_{1}x_{1} + a_{1}y_{1} + \cdots + a_{n}(x_{n}) + a_{n}y_{n}$ $= a_{1}x_{1} + a_{1}y_{1}$
Smilnly $f(xx) = a^T x x = x a^T x = x f(x)$
So me preduct assault a fixed vector

Examples of linear functions: Given a time serres, temps suy $T = (T_1, \dots, T_n)$ tell ne the tomentere at time k. $f(T) = T_k$

Text has a nice civil enganceries excuple:
(es a bridge)
X _L X _Z M X ₃
Three positions across the bonn.
Imagine point loads at x1, x2, x3.
Wat to measure the deflection (say) of the
bern at the midpoint up as a consequence
of weights wi, wz, Wz.
For a bradse: Wi in metric ters
5 m nm
$S(w_1, w_2, w_3) = c_1 w_1 + c_2 w_2 + c_3 w_3$

	· · · · · · · ·	CT W	$C = (C_1, C_2, C_3)$ $\omega = (\omega_1, \omega_2, \omega_3)$	
Wut re	le units	\mathcal{O}	mm / Jone	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccc} w_3 & \text{Measured sa} \\ \hline 0 & 0.12 \\ 0 & 0.31 \\ 1 & 0.26 \\ \hline 0.3 & 0.481 \\ 1.2 & 0.736 \\ \hline \end{array}$	ag Predicted sag 0.479 0.740	
Claum; eu	ey liner	function f	$: \mathbb{R}^n \to \mathbb{R}$ cun	bewritteg
in The J Why is	onn f that?	$(x) = c^{T} x$ Let $c_{k} = f$	(e_k) $e_k = (o_j)$	CER;
	$= (x_{i})$ $= x_i e_i +$	(x_{Λ}) $(x_{2}e_{z}+\cdots+x_{n})$		

$f(x) = f(x_1e_1 + x_2e_2 + \dots + x_ne_n)$ = $f(x_1e_1) + f(x_2e_2) + \dots + f(x_ne_n)$ = $x_1 + f(e_1) + x_2 + f(e_2) + \dots + f(x_ne_n)$
$= C_1 X_1 + \cdots - F_n C_n X_n$ $= C_1 X_1$
Suppleze f is lineor. f(0) = f(0+0) = f(0) + f(0)
$\Rightarrow f(0) = 0$ $Your favorike likes$
f(x) = mx + 6 rot = 1 rot = 1 rot = 0

$If f(x) = c_1 x_1 +$	$+ c_1 \times_1 + b \approx c^T \times + b$
we say f 13	affice
They satisfy a k	nd as kimited superposition:
f 13 Theri	$f(\alpha x \beta \gamma) = \alpha f(x) + \beta f(\gamma)$
f re affue	flax+By)= afk)+BfG)
 	$\beta = 1$
· ·	· ·
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · ·	. .
· · · · · · · · · · · · · · · · · · ·	

Sensitivities T, Insulated red, Fixed taps at ends end. I neasure the temperature at the Sixed positry x (at study state) top at x a fler waiting a while. $f(T_1, T_2)$ i3

What happens of I chuse the temp at the left by a little bit ST.? I expect a snall change in temp at x, rangely proportional to the duge ST, Ditto for T2 f(T,+ ST,, Tz+ STz) ~ f(T,, Tz)+ G, ST, + c2 STz The coefficients a, cz we called sensitivities. $L(\Delta T, A T_2) = c_1 \Delta T, + c_2 \Delta T_2 \quad is$ ct (11, 172) a linear function in the perturbations AT, ATZ. They act as scale fuetors.

In fact, run set here fram coloulues $f(x_{1}, x_{2}) = x_{1}e^{x_{2}}$ $\nabla f = \begin{cases} 24/3x_1 \\ 24/3x_2 \\ 24/3x_3 \\ 24/3x_2 \\ 24/3x_3 \\ 24/3x_$ How you use it: Work at a point x= (3,0) f(30) = 3 $\nabla f = \begin{bmatrix} 3 \end{bmatrix}$ $\hat{f}(x_1, x_2) = 3 + 1(x_1 - 3) + 3 \cdot (x_2 - 0)$ $= f(x^{\circ}) + \Delta f_{\perp}(x - x^{\circ})$ $(\mathcal{A} \times \mathcal{A})$

$\hat{f}(x) \approx f(x)$ if x is close to x ₀ .	•
$\hat{f}(x_0) = f(x_0)$, perfect	•
$\hat{f}(3.2, -0.1) = 3 + 1(0.2) + 3(-0.1)$	•
= 3 + 0, 2 - 0.3 = 2,9	•
(vs 2.695)	•
Only close to $(3,0)$, thugh,	•
$f(1, -10) = 4.5 \times 10^{-5}$	•
$\hat{f}(1,-10) = 3 + (-2) + 3(0-0)$	•
=31	•
fis an affae function. (Thugh frequenty collid the Imar apprex)	•