Inner Praduet (duaitly) [aT=[,,]
$a = (a_1, a_2, a_3, a_4)$ $a = \int $
$b = (b_1, b_2, b_3, b_4)$
$a^{T}b = a_{1}b_{1} + a_{2}b_{2} + a_{3}b_{3} + a_{4}b_{4} \begin{bmatrix} a^{T} \end{bmatrix}^{T} = a$ $\begin{bmatrix} T \end{bmatrix} \begin{bmatrix} T \end{bmatrix} \begin{bmatrix} T \end{bmatrix} \begin{bmatrix} T \end{bmatrix}$
We'll see why T a bit later. L
A lot of HWI is about seeing applications of
143 opention. What is it.
You can think of atb as addug up
the entries of to with weights come from a,
$e \cdot 2 \cdot a = \vec{1}_{4} b = (b_1, b_2, b_3, b_4)$
$a^{T}b = b_{1} + b_{2} + b_{3} + b_{4}$

	$a = e_3$ a = (4, 4, 4, 4, 4)
. .	$a^{-}b^{-}b_{1}+b_{2}+b_{3}+b_{4}$ (average) 4
	a: portfolio assets b: price per asset a,6,+ J total value b: portfolio
. 	18 shoos at \$46 a shore. AAPL

C. of Ac -· 4x Ky 10 ×1 $a = \Delta x \cdot \hat{1}$ + f(x) Ax approx internal $f(x) \Delta x +$ $b_{\mu} = f(x_{\mu})$ (total work, total energy predection) Some absendance. $a^{Tb} = b^{T}a$ $(\gamma a)^T b = \gamma(a^T b)$ $a^{T}(Yb) = (Yb)^{7}a$ $= \chi b^7 q$ $(a+b)^{T}c = a^{T}c + b^{T}c$ $= \mathcal{Y}_{a}^{T} \mathcal{G}$ $a^{T}(b_{fc}) = a^{T}b + a^{T}c$ $a^{T}a = a^{2}_{i} + a^{2}_{i}$ sum of synes - have connection? x2+y2+22 -

 $a = \left(P_1, \dots, P_n \right)$ ↑ prohabilities 05Pi≤l, Pi+ -+Pn = | $b_{=}(b_{i})$ Coutcomes, by with probability PK a browis, by is the prize value. C.g. (are by is 0, ad pr close to 1) at b is the expected withings.

1/22/24
Last class: we introduced the duality opention (a, kine inne
$a^{T}b = a_{1}b_{1}t - t a_{n}b_{n} = \sum_{k=1}^{n} a_{k}b_{k}$
And we saw that there are a number of ratural
opentions that in be expressed like this.
Here's nother:
$a = (a_1, \dots, a_{n+1})$
t a sumber
b = (1, t', t', t', t'')
$a^{T}b = a_{1+a_{2}}t + \cdots + a_{n+1}t^{n}$ (polynomial evaluation)
$a^{T}b = b^{T}a$ $(T) (a+b)^{T}(a+d)$
$(a+b) c = a'c + b'c \qquad (a+b) (c+a)$
$a'(\beta c) = \beta(a'c) = -a'c + b'c + a^{-1}d + b^{-1}d + b^$

Recall your favorite integral rules; $\int_{a}^{b} f(x) + g(y) dy = \int_{a}^{b} f(x) dx + \int_{a}^{b} 563 dx$ $\int_{x}^{b} c f(x) dx = c \int_{q}^{b} f(x) dx$ And your soverite de vatire rules: $f_{X}\left(f(x)+g(x)\right) = f'(x)+g'(x)$ $\frac{d}{dt}cf(x) = cf(x)$ If your know the values of the preces you add them up and scale them, Most molentical operations don't work like this:

sin(A+B) = sin(A)cos(B) + sin(B)cos(A) e.g.= sin(A) + sin(B)(no matter what calc I stedents say JA+B ≠ JA + JB But suppose f(x) = 7x $f(x_{rr}) = 7(x_{rr})$ = 7x+ 7y $f(6\chi) = 7(6\chi)$ = 7.6.4 = 6.7x = 6 f (x) cf(x) f(cx) =

A function	$f: \mathbb{R}^n \longrightarrow \mathbb{R}$
	f(x,y) = f(x) + f(y) + f(y) + f(y) $f(x,y) = x f(x) + f(y) + f$
Mon example	$f(x,y) = x^2 - y^2$ f(1,0) = 1
	$f(2,0) = 4 \neq 2 = f(1,0) + f(1,0)$
	$f(x_{i},y_{i}) = 3x - 4y_{i}$ $f(x_{i},y_{i}) + f(x_{2},y_{2}) = 3x_{i} - 4y_{i} + 5x_{2} - 4y_{2}$ z_{i} $z_{i} = 3(x_{i} + y_{2}) - 4(y_{i} + y_{2})$ $= -f(z_{i} + z_{2})$

For you: $f(\emptyset(Z)) = \infty f(Z)$
E.g. $a \in \mathbb{R}^n$, fixed
$f(x) = a^T x$ $(x \in \mathbb{R}^n)$
$f(x+y) = a^{T}(x+y)$ $= a_{T}(x+y) + \cdots + a_{T}(x+y)$
$= a_{1}x_{1} + a_{1}y_{1} + \cdots + a_{n}(x_{n}) + a_{n}y_{n}$ $= a_{1}x_{1} + a_{1}y_{1}$
Smilnly $f(xx) = a^T x x = x a^T x = x f(x)$
So me preduct assault a fixed vector

Examples of linear functions: Given a time serres, temps suy $T = (T_1, \dots, T_n)$ tell ne the tomentere at time k. $f(T) = T_k$

Text has a nice civil enganceries excuple:
- t - t - t - t - t - t - t - t - t - t
X _L X _Z M X ₃
Three positions across the bonn.
Imagine point loads at x1, x2, x3.
Wat to measure the deflection (say) of the
bern at the midpoint up as a consequence
of weights wi, wz, Wz.
For a bradse: Wi in metric ters
5 m nm
$S(w_1, w_2, w_3) = c_1 w_1 + c_2 w_2 + c_3 w_3$

	· · · · · · · ·	CT W	$C = (C_1, C_2, C_3)$ $\omega = (\omega_1, \omega_2, \omega_3)$	
Wut re	le units	\mathcal{O}	mm / torre	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ag Predicted sag 0.479 0.740	
Claum; eu	ey liner	function f	$: \mathbb{R}^n \to \mathbb{R}$ cun	bewrittey
in The J Why is	onn f that?	$(x) = c^{T} x$ Let $c_{k} = f$	(e_k) $e_k = (o_j)$	CER:
	$= (x_{i})$ $= x_i e_i +$	(x_{Λ}) $(x_{2}e_{z}+\cdots+x_{n})$		slot k

$f(x) = f(x_1e_1 + x_2e_2 + \dots + x_ne_n)$ = $f(x_1e_1) + f(x_2e_2) + \dots + f(x_ne_n)$ = $x_1 + f(e_1) + x_2 + f(e_2) + \dots + f(x_ne_n)$
$= C_1 X_1 + \cdots - F_n C_n X_n$ $= C_1 X_1$
Suppleze f is lineor. f(0) = f(0+0) = f(0) + f(0)
$\Rightarrow f(0) = 0$ $Your favorike likes$
f(x) = mx + 6 rot = 1 rot = 1 rot = 0

$If f(x) = c_1 x_1 +$	$+ c_1 x_1 + b = c^T x + b$
we say f rs	affre
They satisfy a l	and of timited superpositions
f 13 liberi	$f(\alpha_{x},\beta_{y}) = \alpha f(x) + \beta f(y)$
f re affue	flax+By)= afk)+BfG)
· ·	$\beta + \alpha + \beta = 1$
· · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · ·	. .
· · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·