Lat class: a veder is a list of numbers physics. displacement examples: X,Y,7 company B (position) velocity accelentias force time series upiquitus: portfolio asset canto finance M also: images N° $\frac{1}{2} + \frac{1}{2} + \frac{1}$ ender pidel O- - l .- 255 0-RGB colors (r.55) RGB image: 3MN runbes in order

AI (LLM) latert spaze 768 monsers, a sem of on idea. And loke more: see text (ad I'll After do This) Some vector operations: (Note: no à) a=(1,3,7,5) indexug: $a_2 = 3$ $a_3 = 7$ a4 = 5

Subsettives $a_{2:3} = (3,7)$ Concatention b = (2, -3, 9)(a,b) = (1,3,7,5,2,-3,9)All zero vector: $O_n = (O_0 - ..., O)$ n times 0 or 1 ,f n is underbood All ones vector $\vec{1}_n = (1, 1, ..., 1)$ N-filmes $e_{k} = (0, ..., 0, 1, 0, ..., 0)$ Standed busis vector slot k n undestood.

Fadmental Vector Opeatrons 1) Vector addition 2) scalar multiplication. $a = \begin{bmatrix} z \\ 1 \\ c \end{bmatrix} \quad b = \begin{bmatrix} 4 \\ 2 \\ -2 \end{bmatrix}$ $a+b = \begin{bmatrix} 6\\3\\4 \end{bmatrix}$ (just adderty -vise) I portfolio assots you just combined portfoliog if time series of preserves for Sound waves, you, just superimposed the sound unes I mayos, you just layed are more on top of nother

II displacements, atto 7/6 Scaler mult: $\begin{array}{c} 7 \\ 7 \\ 4 \\ \end{array} \begin{bmatrix} 2 \\ 1 \\ 2 \\ 2 \\ 2 \\ \end{bmatrix}$ and o signit; handles, griete You just scale each cry. portfolios. Uniform inc/lec Most mantans notative antions 1 39 These two operations get along: a, 5, creetors of some diversion, & a number $-\alpha = \left(-\alpha_{(j)}, \dots, -\alpha_{n}\right)$

a+b=b+a
(a+b)+c = a+(b+c)
a + 0 = 0 + a = a
$\alpha_{+} - \alpha_{-} = 0$
$\alpha (p a) = (\alpha b) = \alpha a + \alpha b$
1 a = a
$(\alpha r \beta) a = \alpha a + \beta a$
We combre these two opentions as follows
$\alpha \alpha + \beta b$ $\alpha, \beta \in \mathbb{R}$
"a liner comburation of a ad b."
If a,,, an are vectors \$\$,, &n ER

13 also a luca-compo. a, a, + -- + an an · Audio sugnils: combine at verious volumes · ds placements 7 *1*b 0.5a+25 give your these IF tous vectors, what to your det by Jalens all lace coulos

Inner Praduet (duaitly) [aT=[,,]
$a = (a_1, a_2, a_3, a_4)$ $a = \int $
$b = (b_1, b_2, b_3, b_4)$
$a^{T}b = a_{1}b_{1} + a_{2}b_{2} + a_{3}b_{3} + a_{4}b_{4} \begin{bmatrix} a^{T} \end{bmatrix}^{T} = a$ $\begin{bmatrix} T \end{bmatrix} \begin{bmatrix} T \end{bmatrix} \begin{bmatrix} T \end{bmatrix} \begin{bmatrix} T \end{bmatrix}$
We'll see why T a bit later. L
A lot of HWI is about seeing applications of
143 opention. What is it.
You can think of atb as addug up
the entries of to with weights come from a,
$e \cdot 2 \cdot a = \vec{1}_{4} b = (b_1, b_2, b_3, b_4)$
$a^{T}b = b_{1} + b_{2} + b_{3} + b_{4}$

	$a = e_3$ a = (4, 4, 4, 4, 4)
. .	$a^{-}b^{-}b_{1}+b_{2}+b_{3}+b_{4}$ (average) 4
	a: portfolio assets b: price per asset a,6,+ J total value b: portfolio
. 	18 shoos at \$46 a shore. AAPL

C. of Ac -· 4x Ky 10 ×1 $a = \Delta x \cdot \hat{1}$ + f(x) Ax approx internal $f(x) \Delta x +$ $b_{\mu} = f(x_{\mu})$ (total work, total energy predection) Some absendance. $a^{Tb} = b^{T}a$ $(\gamma a)^T b = \gamma(a^T b)$ $a^{T}(Yb) = (Yb)^{7}a$ $= \chi b^7 q$ $(a+b)^{T}c = a^{T}c + b^{T}c$ $= \mathcal{Y}_{a}^{T} \mathcal{G}$ $a^{T}(b_{fc}) = a^{T}b + a^{T}c$ $a^{T}a = a^{2}_{i} + a^{2}_{i}$ sum of synes - have connection? x2+y2+22 -

 $a = \left(P_1, \dots, P_n \right)$ ↑ prohabilities 05Pi≤l, Pi+ -+Pn = | ·····) (6°) 1=(b,) Coutcomes, by with probability PK a browis, by is the prize value. C.g. (are by is 0, ad pr close to 1) at b is the expected withings.