
Math F314: Linear Algebra Lab 4: Leslie Matrices

Overview

A structured population model tracks not just the size of a population, but also the number
of individuals in each of a number of stages of development. For example, a basic model
might track the number of immature, adolescent, and adult individuals. Doing so allows
modeling of dynamics within the population, and also allows direct modeling of the e�ects
of age dependent phenomena on the population size. For example, death rates might be
di�erent for di�erent age groups, and females of di�erent ages may have di�erent fertility
rates.

In this lab we study Leslie models, a kind of structured population model that only involves
linear interactions.

Exercise 1: Suppose we divide our population is divided into only two classes: children and
adults. Let cn denote the number of children at time step n and an the number of adults. �e
population evolves according to the following rules:

cn+1 = 1
8
cn + 6an

an+1 = 1
5
cn .

We denote the whole population by a vector

pn = [cnan] ,

so in matrix notation
pn+1 = [

1
8 6
1
5 0]pn .

�e matrix appearing above is called a Leslie matrix.

Suppose p0 = (40, 0) (i.e. we start with 40 children and no adults). What is p1? Explain what
happened during this time step in everyday language.

Suppose p0 = (0, 100) (i.e. we start with no children and 100 adults). What is p1? Explain
what happened during this time step in everyday language.

Suppose p0 = (40, 100). How is p1 related to the similar computation in the previous two
examples? How many of the children in p1 were children in p0?

Exercise 2: We will now track the population starting from an initial population of p0 =
(10, 10). You can think of the population being measured in thousands to make these num-
bers more realistic. In Julia, enter the matrix from the previous problem as A. �en enter the
following commands

p = [10;10];

P = p;

p = A*p;
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P= [P p];

p = A*p;

P = [P p];

p = A*p;

P = [P p];

import Plots

Plots.plot(P’)

Explain what the contents of P are. Your answer should be precise: what does each row of
P contain? What does each column of P contain? Update your plot so that its legend is
informative (not just a generic “y1” and “y2”).

Exercise 3:We could build a graph of the population over time by entering more and more
steps like the ones above. But that’s tedious. In Julia, enter the following.

p = [10; 10];

P = p;

for k=1:8

p = A*p;

P = [P p];

end

Plots.plot(P’)

Observe what the new plot is. �enmodify these lines to generate a graph of the population
over 25 generations.

Exercise 4: Build a function generations(A, p0, n) that takes a Leslie matrix A, an ini-
tial population vector p0, and a desired number of generations and returns the matrix P giv-
ing the populationhistory over n generations starting from p0. For example, generations(A,
p0, 1)would return [p0 A*p0 ] and generations(A, p0, 2)would return [p0 A*p0

A*A*p0].

Verify your function works by regenerating your 25 generation graph with it.

Exercise 5: Using your generations function, generate and plot generation histories for
the initial conditions p0 = (19, 1) and p0 = (1, 19).
Exercise 6: Qualitatively, describe the common features of the way the populations in the
last two questions change over time. Do you see population growth or decay? Do the pop-
ulations oscillate or not? If there are oscillations, do they grow in size or decay?

Exercise 7: Generate amatrix P containing the population history starting from p0 = (10, 10)
up to 100 subsequent generations. Plot log.(P’). Your plot shows that for large values of
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n, an can be modeled by a function of the form

an = Cλn

How can you measure C and λ from the graph?

Exercise 8: Use Julia to �nd the least-squares best �t line to the graph of log.(P’(:,1)).
For full credit, you must build a linear system and then solve it with the backslash opera-
tor. �en �nd the line of best �t to log.(P’(:,2)) as well. Graph the logarithms of the
populations as a scatter plot along with your lines of best �t.

Exercise 9: Use your results from the previous exercise to predict the long term ratio cn/an.
Explain the computations you do to arrive at this number.

Exercise 10:�e empirical results of the last two exercises can be predicted mathematically
using eigenvalues and eigenvectors of thematrixA. Wewill be discussing these in class soon,
but this lab is self contained and contains an introduction to these concepts.

An eigenvector of a square matrix B is a nonzero vector that satis�es

Bv = λv
for some scalar λ. For example, v = (1, 1) is an eigenvector of

B = [1 2
2 1]

because
Bv = [33] = 3v.

We say that v is an eigenvector with eigenvalue λ = 3. Explain why 5v is also an eigenvector
with eigenvalue λ = 3. For what choice of c is cv not an eigenvector of B with eigenvalue
λ = 3?

Exercise 11: Notice that the equation Bv = λv can be rewritten as
(B − λI)v = 0.

Since we require v is nonzero, this can only happen when det(B − λI) = 0.

For our Leslie matrix A, this equation is

det [
1
8 − λ 6

1
5 −λ] = 0

which is a quadratic equation in λ. Write down the equation. What are its roots? We will
call these roots λ1 and λ2, with λ1 being the largest of the two in absolute value. �ese are
the eigenvalues. For each of λ1 and λ2, �nd an eigenvector, i.e. a nonzero solution of

Avi = λivi .
for i = 1 and i = 2. Do one of these computations by hand and include it with your lab.

Exercise 12: In fact Julia can compute eigenvalues and eigenvectors. �e magic words are
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import LinearAlgebra: eigen

lambda, E = eigen(A)

�e columns of matrix E will be eigenvectors, while the vector lambda will contain a corre-
sponding list of eigenvalues. Hence A*E[:,1]will be the same as lambda[1]*E[:,1], and
similarly for the second column.

Use Julia to verify the computations you did in the previous problem by using eigen to com-
pute the eigenvalues. You should show that your eigenvalues are the same (up to numerical
rounding) and that the eigenvectors you found by hand are a multiple of the vectors that
Julia found.

Exercise 13: Let v1 and v2 be the two eigenvectors obtained from E by extracting the �rst
and second column respectively. Generate a graph of the populations over 25 generations
starting from v1. �en do the same for v2.

(Don’t worry that that a negative population size is not physical; we’re just trying to under-
stand the mathematics of the model at this stage).

Exercise 14: If p0 = v1, what is the exact value of p121? Don’t use Julia to answer this question;
I’m looking for an analytical answer involving λ1.

Exercise 15: Suppose A has eigenvalue λ and you produce a population graph starting at
a corresponding eigenvector. For each of the values of λ below, sketch by hand what you
would expect the graph to look like.

• λ = 1.3

• λ = .7

• λ = −0.7
• λ = −1.3

Exercise 16:�e initial vector p0 = (10, 10) can be written as a linear combination of v1 and
v2. Use Julia to determine the coe�cients of this combination. �at is, you are looking for
numbers c1 and c2 such that c1v1 + c2v2 = (10, 10). �is is one line of code in Julia using the
matrix E.

Exercise 17: Starting from p0 = (10, 10), use your answer to the previous question to write
down an explicit formula for the population size of the form

pn = x1λn1 v1 + x2λn2v2.
Everything on the right-hand side of this equation except for n should be a number or a
vector of numbers.

Exercise 18: How does your expression from the previous problem explain the original
graph you made in Exercise 3 in terms of the graphs in Exercise 13. How does the fact that
any vector can be written as a linear combination of the basis v1 and v2 explain what you saw
in Exercise 5?
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Exercise 19:Which of the eigenvalues λ1 and λ2 are related to the graphs you saw in exercise
7? Why is this eigenvalue, and not the other one, the one that controls the long-term growth
rate? We call this eigenvalue the intrinsic growth rate of the population. Why is it important
to know if this number is greater or less than one?

Exercise 20: Suppose A turned out to have eigenvalues λ1 = 0.7 and λ2 = −0.2. For almost
all initial populations, howwould you expect the population to behave over time. Explain in
a way that makes clear the e�ect of both eigenvalues. Sketch a graph of the population sizes
with the right qualitative features.

Exercise 21:�e eigenvector corresponding to the largest eigenvalue of A is called the stable
age distribution for the model. To see why, with λ1 the intrinsic growth rate, rewrite your
answer to Exercise 17 in the form

1
λn1

pn = x1v1 + x2 ( λ2λ1 )
n

v2.

Write down this equation with no symbols on the right-hand side except for n.

Note ∣λ2/λ1∣ < 1. �is equation should be interpreted as follows: If we account for the main
growth trend of the population by dividing by λn1 , then the rescaled population will tend to
the vector v1, the stable age distribution.

Using an eigenvector, predict the long term ratio cn/an. Compare this prediction with your
answer to Exercise 9.

Exercise 22: Now that you understand the principles involved in analyzing a Leslie model,
let’s vary the model. Consider

pn+1 = [0 6
1
5

1
4
]pn .

Now we’re allowing 1
4 of the adults at each time step to survive to the next time step, but no

immatures remain immature.

1. Generate two graphs of the population starting from a couple of di�erent initial pop-
ulations.

2. Determine the intrinsic growth rate for the model.

3. Determine the stable age distribution.

Exercise 23: For each of the followingmatrices, use Julia to compute eigenvectors and eigen-
values. For each, record 1) the intrinsic growth rate and the other eigenvalue, and 2) the stable
age distribution. Alsowithout using Julia to do a population simulation, sketch a likely graph
of the way such a population would behave over time.

a) [0 6
1
6 0] b) [0 6

1
7 0] c) [0 6

1
6

1
4
] d) [0 6

1
12

1
4
]

Exercise 24:�e data in the following table (taken from Key�z’s Introduction to the Mathe-
matics of Population) applies to women in the United States in 1964.
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Age Fertility Survivorship Population (in millions)
0-5 0.00000 0.99661 10.136
5-10 0.00103 0.99834 10.006
10-15 0.08779 0.99791 9.065
15-20 0.34873 0.99682 8.045
20-25 0.47607 0.99605 6.546
25-30 0.33769 0.99474 5.614
30-35 0.18333 0.99229 5.632
35-40 0.07605 0.98866 6.193
40-45 0.01744 0.98304 6.345
45-50 0.00096 - 5.796

Fertility is the number of female infants born on average to each woman in a �ve year time
span. Survivorship is the fraction of individuals that survive from one age class to the next
over a �ve year timespan. We stop tracking at age 50 since there are no births to women over
the age of 50 and hence these individuals do not impact the population dynamics. �is data
is contained in the �le lab4.mat on the course website and the Julia notebook already has
commands to read the �le and extract the variables survivorship64, fertility64, and
population64. From them, assemble a Leslie matrix.

Exercise 25: How many women would you predict there will be in the 35-40 age group in
2004? Be careful about the time step size.

Exercise 26: What is the total number of women of age 50 or less in the United States in
1964? Hint: Julia has a sum command.

Exercise 27: If you only had the fertility and survivorship data from the table in Exercise 24,
along with your answer to Exercise 26, what would you predict for the number of women
in each age class? Answer this question by using Juila to generate the prediction and then
graph your prediction alongside the true population sizes.

Exercise 28: Discuss the possible reasons why the actual population in 1964 di�ers from
your predictions. Your discussion should be speci�c to the data you are observing, not a
general discussion of why di�erences may occur.

Remark:�eLeslie matrix you construct in Exercise 24 will have some complex eigenvalues
and eigenvectors. Don’t let this bother you toomuch! One can show that for Leslie matrices,
the eigenvalue of largest magnitude will be real and positive, and its associated eigenvector
will be real and its entries will be non-negative. So the intrinsic growth rate and stable age
distributions still make sense. You should, however, be intrigued by those complex eigen-
values and eigenvectors. �ey lead to oscillations more complicated than the ones you saw
earlier in the lab. I’ll discuss this material a little later when we discuss eigenvectors and
eigenvalues in more detail.
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