6 * 62 6, 52 (g, 1, -, gn) word. Every word is related to a engue reduced word, words reduced r: W -> R every word is clerly relatable to at least () if w is reduced r(w) = wone reduced word . 2) if $w \sim w' r(w) = r(w')$ wrv & reduced v = v(v) = v(v) = v(v') = v'

reduced $V = (h_1, h_2, ..., h_n)$ $V \odot () =$ ge G n=0, 1_{x} $V \odot \begin{pmatrix} d \\ g \end{pmatrix} =$ (9) $g \neq 1_{x}$ (h,,--, ha-() ME G hig = 12 (her, hay hag) hare Gx $h_{15} \neq 1_{\infty}$ $(h_{1,-},h_{n})$ $h_{n} \in G_{X}$ $g = 1_{X}$ $(h_{1,\ldots},h_{n,g})$ reduced word hn & Ga 971x $V \bigcirc (g_{1,-\gamma} g_m) = ((v \oslash g_1) \odot g_2) \odot g_3)$ O guy)

The result R(V, W) reduct (word 5 reduced. R(V,W) = VWA VW is reduced, If W~W' R(V, w) = R(V, w')It's enough to show this it W, W we related by a single elementary reduction. W = m, gg', mR(V,W) = R(V,W')W' = nmg, g', nm

W=nn,nn W = m, 1, mr(w) = R((), w)valual if W is reduced tus (). W is reduced 50 R(U)W) = WIf w~ W' r(w) = R((),w) = R((),w') = r(w')

$g_1 \in G_2$ $g_k \in G_2$	$0_1 9_2 \neq 9_2 3_1$
Git Gz There is a rater map	
njecta 9 grup han	$g \stackrel{P}{\longrightarrow} g$ $= g g'$ $= f_1(g) \oint_1(g')$
Suppose I hund tavo 4. : G1 -	sharp hons

42 Gz -> H Wunt to "more" to set a map I: G1+G2 > H. Characteristic Property of Free Product: Suppose 4: Gi -> H are homs. Then there exists a unique hour I: G, *Gz >> H Such that Sor ender a Gi*Gz Ir Giz J Ga tas

(g1,---, gn) $\overline{F}(g_1, \dots, g_n) = \overline{F}(g_1) \cdot \dots \cdot \overline{F}(g_n)$ = $f_{\alpha_1}(g_1) \cdot \cdots \cdot f_{\alpha_n}(g_n)$ no choices, If I exists then it is origue, $F((9,92)) \stackrel{?}{=} F((9,92))$ 91,926 Gx > I (9,92) = 7/ (9,92) $I(s_1)I(s_2)$ = 7/ (g,) 2/ a (g) 4 (g.) 4 (gc)

Normal Subgreps 6g h g E H wherever ちじて 5779 EH 14 (\mathcal{F}) 5 gH gt 6

Every kerel of a honorophism is normal, k E ker Ø \$. . . $\phi(g'kg) = \phi(g')\phi(k)\phi(g)$ $= \phi(g^{\prime}) \phi(g)$ $= \phi(g^{-1}g)$ = 1 => 5 kg E kan of Norman Substranps are precisely the kends of Group hous.

Z Na ZeI Na EG, romal subgrup Is ANa normal? l'ep. ging ENX since nelle, Hx. N Car Given CEG, a set, myber not even a subgrap we can construct the smallest normal subgrap contenus Co It is the intersection of all normal subgraps centains C. I's called the normal closure of C, C,