$\Gamma(x_n) = Z_n$ V:18-> 5' Xn-x $\chi_{\Lambda} \rightarrow \chi \leftarrow Job' (Z = \Gamma(\chi))$ $\Gamma(\chi_{\Lambda}) \rightarrow Z$ r(x) = f(x) + f(x) (x - f(x)) $Z_n = f(x_n) + f(x_n) (x_n - f(x_n))$ (2) Z = f(x) + 2(x - f(x)) $Z_n - f(x) = f(x_n) \left(x_n - f(x_n) \right)$

 $\pi(s',p) \quad n \ge 2$. . Claim' for a manifold M' with n72 and a path of fing some p to some of of 2 + M al 2 + P, 2 = r trey f is path honotopic to a path that does not contern 9

	U, open when 2 and U is home worplic to \mathbb{R}^n $V = M \setminus 223$
EHHHJ LA Sert Lo U	f'(v) f'(v) After analgential no subilitable endpoint $rs q_{f}$
. .	

. . . / · · · · / · · · · · R" \ 203 is path connecte

Want If 4: X-7 is a handforg equivalue then $l_{\pm}: \#(X, p) \rightarrow \#(T, l(p)) \ s \ a \ srup (so norphism)$ Spirit: Let y he a homotopy invese So Yol ~ idx $\mathcal{Y}_{\mathcal{X}} \circ \mathcal{U}_{\mathcal{X}} \neq (\mathcal{I}_{\mathcal{X}})_{\mathcal{Y}}$ $(404)(p) \neq p$ in genun,

Tedinical Leuna: Suppose & and 7 - X -77 are businotopic with hamotopy H, Fix pex ul let h(E) = H(p, E) (pex). Then $\overline{\Phi}_{h}: \pi_{i}(Y, \Psi(p)) \rightarrow \pi_{i}(Y, \Psi(p))$ satisfies $\ell_{\star} = T_{1}(Y, \ell(\rho))$ $\#_{1}(X,p)$ a a la a <u>F</u>a a a <u>a</u> la a <u>F</u>a a a γ_{\perp} \neg_{τ} $(\gamma, \gamma(p))$ / 4(p) PP

Pf. Let f be a loop bused of p, We wigh to sheen $4_{\pm}[f] = \overline{\Phi}_{n}(e_{\pm}[f]),$ This is equivalent to showing 4.f Np h. C.f. or oquivalently h. (40f) ~ (40f).h. Conside F(s,t) = H(f(s),t).

Mit h. (40f) 2p (lof). b · · · · · · + E hhi consequerce of n the Same Lame, Cof Ν. U ~p K·U

This If l: X-97 is a honotopy equivalance they l_{*} $T_{i}(X,p) \rightarrow T_{i}(Y,l(p))$ is a grap (30morph 16m) Pf: It suffices to show that ly is bijective. Let 7 be a homotopy inverse 50 70 l ~ Idx. (ansoche (Idx)+ 7 TT, (Y, p) $\pi(y, \rho)$ $(\mathcal{Y}, \mathcal{Q})_{\mathcal{X}} \xrightarrow{S} \operatorname{Tr}(\mathcal{Y}, \mathcal{Y}(\mathcal{Q}(p)))$

Here (404) = 4.0 G a gray isomorphism, In particular, 7, 13 surjecture (and Gis Mjecture), Note $\mathcal{Y}_{\star}: \pi(\mathcal{Y}, \mathcal{Y}_{\rho}) \longrightarrow \pi(\mathcal{X}, \mathcal{Y}(\mathcal{Y}_{\rho})).$ Consider Idy $\overline{\mathcal{T}}_{,}(Y, \mathcal{U}_{,}))$ $\pi(Y, Q(p))$ $\begin{bmatrix} x & x & x \\ x & x & y \\ x & x & x \end{bmatrix} \begin{bmatrix} x & x & y \\ x & y \end{bmatrix} \begin{bmatrix} x & y \\ y \end{bmatrix} \end{bmatrix} \begin{bmatrix} x & y \\ y \end{bmatrix} \end{bmatrix} \begin{bmatrix} x & y \\ y \end{bmatrix} \begin{bmatrix} x & y \\ y \end{bmatrix} \begin{bmatrix} x & y \\ y \end{bmatrix} \end{bmatrix} \begin{bmatrix} x & y \\ y \end{bmatrix} \begin{bmatrix} x & y \\ y \end{bmatrix} \begin{bmatrix} x & y \\ y \end{bmatrix} \end{bmatrix} \begin{bmatrix} x & y \\ y \end{bmatrix} \begin{bmatrix} x & y \\ y \end{bmatrix} \end{bmatrix} \begin{bmatrix} x & y \\ y \end{bmatrix} \begin{bmatrix} x & y \\ y \end{bmatrix} \begin{bmatrix} x & y \\ y \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} x & y \\ y \end{bmatrix} \end{bmatrix} \begin{bmatrix} x & y \\ y \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} x & y \\ y \end{bmatrix} \end{bmatrix} \begin{bmatrix} x & y \\ y \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} x & y \\ y \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} x & y \\ y \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} x & y \\ y \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} x & y \\ y \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} x & y \\ y \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} x & y \\ y \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} x & y \\ y \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} x & y \\ y \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} x & y \\ y \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} x & y \\ y \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} x & y \\ y \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} x & y \\ y \end{bmatrix} \begin{bmatrix} x & y \\ y \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix} \end{bmatrix}$ $(\ell \circ \mathcal{Y})_{\mathcal{F}} \rightarrow \pi_{\ell}(\mathcal{Y}, \ell(\mathcal{Y}(\ell(p))))$ By the sure insensity (lot) is beserver, so 74 is misediller look to 14 is locieties, so 74 is misediller look to 14 Strate

Have 4x is bijective. But then, returns to 7, lx = (Idx)x ve conclud ly is bijective. $\left(\begin{array}{cccc} & & & & \\ & & & \\ & & \not \end{array}\right)^{-1} \left(\begin{array}{cccc} & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$ J- Spine le formation netmot

deformenter $\Gamma \circ \mathcal{L}_{A} = \mathcal{L}_{A}$ A · .5 Ĵor ~ îd her stopy equilat to X