$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{c} \cdot \\ \cdot $	1 Eventy cove 2 Va 3	

R F(x)+(x) - ~ +1× 13-351C 15 continuous ×n > × hen $F(y_n) \rightarrow$ $\langle \cdot \rangle_{-}$ You read to show ZFEAB conveges!

Suppose 4n = x and F(4n) = z. Need to show 2 = F(x). Unit to share 6(F) is closed, $(x_n, F(x_n)) \rightarrow (x, z)$ Need to show (x, z) E G (F) $(\chi, F(x))$

Fundamental Graup (Topology + Algebra) both honotopic to Relative homotopy fat a constant maps Def: Let X, Y be spues and ASX Suppose f, f: X > Y. We suy they are homotopic relative to A , f there is a hemotopy H from f, to fz such that H(a, t) = f(a) for all $a \in A$.

(only possible , S $f_z(a) = S_i(c) \quad \forall a \in A$ A LX Def: Suppose f, fz 'I > X we two paths, We say they are path homotopic if Mey one homotopic velative to 20, 13 (The endpoints reed to stay put) Important special case: A path f: I as X a loop f(0) = f(1).

e.g. $f(s) = e^{2\pi c \cdot s} - 1$ se I			
Pall homotopy;			
f(s,t) = f(s)(1-t)			
Paths that ac path hanotopic			
to constant palles are called (146 [and])			
vull homotopic . (boring) (Musi de a loop.)			
<pre></pre>			
· · · · · · · · · · · · · · · · · · ·			

Es: $\phi: I \rightarrow I$ 1^{\uparrow}
$\phi(o) = 0 \phi(() = 1$
Consider a path $f: I \gg X$.
We can make a new path $\tilde{f} = f \cdot \phi$.
Observe that $\tilde{f}(\sigma) = f(\phi(\sigma)) - f(\sigma)$
and som $f(l) = f(l)$.
We call F a reparameterization of F.

In Cenit J 13	putte tremestopic to f	. .
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$f\left(s\left(1-\varepsilon\right) + \phi(s)t\right)$ $f\left(s\left(1-\varepsilon\right) + \varphi(s)t\right)$ $f\left(s\left(1-\varepsilon\right) + \varphi(s)\right)$ $f\left(s\left(1-\varepsilon\right) + \varphi(s)\right)$ $f\left(s\left(1-\varepsilon\right) + \varphi(s)\right)$	
$H(1, \mathcal{E}) \geq$	$f\left(\left \left(1-\epsilon\right)+\phi(1\right)+\phi(1)\right\rangle$ $f\left(\left \left(1-\epsilon\right)+\epsilon\right\rangle\right)=f\left(1\right)$. .
H(0, E) =	farly	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

[f] < path homolopy class of f Call patters that are patty hemotopic to f) Set of all pall honotopy classes as loops lased at T, (X, P) < of X (with bose 5 X, Y

TI, (\$p) 15 a group. . Det: Two paths S,g in X are composable of f(1) = g(0). (Note: order matters) fail gue composisk

we define $f \cdot g(s) = \begin{cases} f(2s) & 0 \le s \le l_2 \\ 0 \le s \le l_2 \end{cases}$ $\left\{g\left(2s-1\right) \frac{1}{2} \leq s \leq \right\}$ Note that fig is continues by postues lemm. Note: if fad y one loops based at p then they are composable in eiter order and we contende to $f_{1,0}$ and $f_{1,0}$ and $g_{2,0}$ and $g_{2,0}$ fa, fz are path homotopic gi, gz are path homotopic Prop. Suppose f_z 0 g_j findg, are composable and

Then f_2 and g_2 are composable and $\left[f_2(1) = g_2(0)\right]$	
f.g, is path hanotopic to fz.gz.	· ·
f_2 g_2	· ·
$ \begin{array}{l} \text{Pf:} \\ \text{H}(s,t) = \\ \text{F}(2s,t) 0 \le s \le \frac{1}{2} \\ \text{F}(s,t) = \\ \text{F}(s,t) $	· · ·
$H(s,t) = \{G(2s-1,t) \neq \frac{1}{2} \leq s \leq 1 \}$ $f_{1} \neq g_{1}$	· · ·
$F(2, \frac{1}{2}, t) = F(1, t) = f_{1}(1) \leq 5=\frac{1}{2}$	· ·
$G(2:\frac{1}{2}-1, E) = G(0,E) = g_1(0) E = 7$ posturo!	
	· ·
· · · · · · · · · · · · · · · · · · ·	

[f]·[9]) well defind $f \circ g$ f.g ~ f.g $[f \cdot 5] = [f \cdot \hat{g}]$