1) Paths into S' lift (md you an choose any compatible starting No cut f · · - J - F - A J 7 $deg(g) = \widetilde{f}(1) - \widetilde{f}(0)$. . . $\frac{\pi}{2} 5' \xrightarrow{9} 5'$

2) Homotopres of paths into 5' lift (and you an proce are computable points F 7 IXJ ->> 5'-> 5' degree desiends to humstopy classes

9, ~ 92 => leg (g) = deg (g2) 9, 97 tz $F(s, \epsilon)$ $G(\pi(s), t)$ 9, $F(s,t) = G(\pi(s),t)$ fz : $d(t) = \widetilde{F}(1,t) - \widetilde{F}(0,t)$ P

· · · · · · ·	$d_{eq}: [5', 5'] \rightarrow \mathbb{Z}$
 	Les 3 surjectue $\omega_n(z) = z^n \deg(\omega_n) = n$
	leg is injecture
· · · · · · · ·	Lemmi: $9:5' > 5'$
. 	Then s is knowledge to g' with $g'(1) = 1$
.	
	· · · · · · · · · · · · · · · · · · ·

 $I deg(g_1) = deg(q_2) \implies g_1 \sim g_2$ $deg(Lg,\overline{J}) = deg(Lg_2\overline{J})$ $deg(g_1) = deg(g_2) \rightarrow g_1 r g_2$ 27 [J] = [g] $WLOG = g_1(1) = 1, g_2(1) = 1$ Skelel al proof. Let f. = gio T and let J; be lift of f_i with $\tilde{f}_{i}(0) = 0$. $deg(g_1) = \widetilde{f_1}(1) - \widetilde{f_1}(3) = \widetilde{f_1}(1)$ $deg(g_2) = \widetilde{f_2}(1)$ ETS 2 1

 $N = deg(a_1) = deg(g_2)$ fift $\widetilde{H}(s,t) = \widetilde{f}_{1}(s)(1-t) + \widetilde{f}_{2}(s)t$ H(0, E)= 0 $-\left(\left(1, \pm\right)\right) =$ N $|z| = \frac{1}{2} \frac{1}{2$

 $\left| \left(\left(0, 6 \right) \right) \right| = \mathcal{E} \left(\mathcal{H} \left(0, 6 \right) \right)$ $= \epsilon(0) =$ troid F(1, t)- 1 $x \leq x \leq 1$ $G(\pi(s), 0) = H(s, 0)$ $= \varepsilon \left(\widetilde{H}(s, 0) \right) - \varepsilon \left(\widetilde{f}(s) \right)$

(5) \sim > 9, (T(5)) $G(z, 0) = g_1(z)$ $G(z, () = g_z(z))$ n, $T) \rightarrow T$ 4 0 F (nz) $\mathcal{C}(n_i)$

Bower Fixed Pourt Therem Suppose f: B2 > B2 is continues. Them there exists x E TB " such that f(x) = x. Why care. $= \chi_1 - \Gamma(\chi_1)$ $F'(\mathcal{A}_{\Lambda})$ $(x) = x \quad (=7 \quad F(x) = 0$

 $(x) = \frac{x}{z} + \frac{z}{x}$ Lemma: Suppose on 13 a sequere in R2 ad £1 13 a sequence in IR and un > a = 0 and typen > 6. Then to -> t for some t. $t_n a_n \rightarrow$ 0-0 5h an

670 Then some component is non 200. Just the look at that comparent to set the for some tr Pf: (of Brower) Suppose to the working that f(x) = x for all x & RB? There exists a unique t = T(x) such $\left(\begin{array}{c} \mathbf{1} \\ \mathbf{1} \\$ / tut f(x)+ (x-f(x)) & < 5'= 2 B². L= +0 Dexercise We will assume for the moment that Z is continuous.

Define r(x) = f(x) + (x - f(x))T(x) $r: \mathbb{B}^2 \to S^1$ f(z)This is confirmed Defue H: 5'x I -> 5' H(z, L) = r(zL)Observe H(z, o) = r(o)which is constant in Zo On the other hand H(z, 1) = Z

Since $\mathcal{C}(\chi) = 1$, if $\chi \in 5'$.
Hunco H 15 a humotopy betwan some coustrat mp
$S' - S' + J_{S'} + S' + S' + S'$
deg(c) = 0 $deg(d) = ($
The degress differ but homotopic maps leave
Me sure degree,

							•															•																		
					•	•											•															•	•							
	•				•	•	•			•							•					•		•		•					•	•	•							
		• •			•	•		٠	•	•	• •		٠	•	٠	• •				٠	•	•		•			•	• •	•	٠	•	٠	•		•	•	٠	•	٠	
					•	•				•			•		•		•			•					•	•	•					•	•				•		•	
•	•	• •		٠	•	•	•	٠	•	٠	• •	•	٠	٠	٠	• •				۰	٠	•	• •	٠			•	• •	٠	٠	•	٠	•	• •	٠	٠	٠	•	٠	
•	•	• •	•	•	•	•	•	•	•	•	• •		•	•	•		٠	•	•	•	•	•		•	•	•	•		•	•		•	•		•	•	•		•	
•		• •		•	•	• •		٠	•	•	• •	•	٠	•	•	• •		•		٠	•	•		•			•	• •	٠	٠	•	٠	•	• •	•	٠	٠	•	٠	
•	•	• •	•		•	•	•	•	•	•	• •	•	•	•	•		•	•	•	•	•	•		•	٠	•	•		•	•	•	•	•		•	•	•	•	•	
•		• •	•	•	•	• •	•	•	•	•			•	•	•		•	•		•	•	•		•	•	•	•		•	•		•	•	• •	•	•	•	•	•	
•	•	• •	•	٠	•	• •	•	٠	•	•	• •	•	٠	٠	٠	• •		•	•	٠	٠	•	• •	٠			٠	• •	٠	٠	•	٠	•	• •	٠	٠	٠	•	٠	
•	•	• •	•		•	• •	•	•	•	•	• •	•	•	•	•	• •	•	•	•	•	•	•		•	•	•	•		•	•	•	•	•		•	•	•	•	•	
•	•	• •	•	•	•	• •	•	•	•	•	• •	•	•	•	•	• •	•	•	•	•	•	•	•••	•	•		•	• •	•	•	•	•	•	• •	•	•	•	•	٠	
•	•	• •	•		•		٠		•	•	• •	•	0	٠	•	• •	۰	•	•	0	٠	•	• •	•	٠	٠		• •		۰	•	0	•	• •	٠			•		
	•						•	•		•			•	•			•		•	•	•	•		•	•	•	•		•	•	•	•			•	•	•	•	•	
								٠							•																									
													۰				•																				٠			
				٠			•						0		•		•			0	٠					•				٠		0	•	• •	٠	٠	۰			
								•												•												•	•			•				
					•	•	•	٠		•			٠		٠		•			٠	٠	•		•					٠	٠	•	٠	•	• •	•	*	٠	•	٠	
٠	•	• •	•	٠	•	•	٠	٠	٠	٠		٠	۰	٠	٠	• •				٠	٠	•		٠		•	٠	• •	٠	٠	•	٠	•	• •	٠	٠	٠	٠	٠	
	•				•	•		•			• •		٠	•	•		•			•	•	•		•		•	•					•	•			•	•		•	
٠	•	• •		٠	•	• •	•	٠	٠	*		•	٠	٠	٠	• •		•		٠	٠	•		٠			•	• •	٠	٠	•	٠	• •		٠	٠	٠	٠	٠	
•		• •			•	• •	•	٠	•	•	• •		٠	•	•	• •				٠	•	•		•			•	• •	٠	•	•	٠	•	• •	•	٠	•	•	•	
•	•	• •	•	•	•	•	•	•	•	•	• •		•	•	•		٠	•	•	•	•	•		•	٠	•	•		•	•	•	•	•	• •	•	•	•		•	
•	•	• •	•	٠	•	•	٠	٠	٠	٠	• •	٠		٠	٠	• •	•	•	•	٠	٠	•	• •	٠	•	•	٠	• •	٠	٠	•	٠	•	• •	٠	٠	٠	٠	٠	
		• •																																						
		• •																																						
		• •																																						
		• •																																						
		• •																																						
															,																								,	