Shrinking Lemma If X is a locally compact Hausdoff space and UEX is open and xEV, there exists an open precompact set V such that $x \in V \subseteq V \subseteq U$. Pf: Let x and U be given as in the Shutement, Stree X 15 LCH - Acre 13 a precompad open set l' contains x. Observa W/U is a closed subset of W and is here compact. Suce X is Hunsdorff. there exist disjoint open sets A ad B B such that x E A ad W/U = B, UA and she xx

Let V=ANW which is an open set that contains x. Observe that VEW same VEW. Moreover, since $V \in A \subseteq B^{c}$, f follows but $V \in B^{c} \in (W \setminus U)$, a closed! Here $\overline{V} \subseteq \overline{W} \cap (\overline{W} \setminus U)^{c}$ $= \overline{W} \cap (\overline{W} \cap U^{c})^{c}$ $= \overline{W} \left(\overline{W} \left(\overline{W} \left(1 \right) \right) \right)$ $= (\overline{W} \cap \overline{V}^{2}) \cup (\overline{W} \cap \overline{U})$ $\overline{W} \cap U \subseteq U.$

Lemma: Every closed subset of a LCH is LCH.
Prop' An open subset of a LCH 13 LCH.
Pf: Let U be open in the LCH space X.
Suppose xEU, From the shrinkers lemma we an ful a precaused.
open set $V = 0$ such that $cl(V,X) = 0$. Now $cl(V,0) = cl(V,X) \cap 0 = cl(V,X)$.
Moreover cl (V, X) is compact with respect to X ad
have also with respect to U.

Cor: Every open subset al a conjust Housdaff spice is LCH. In fact, given a LCHX thee is a conjust hunsderff Spuce X* such that X = X* (with the subspace top) ad X* X his just one point, (one-point compactification). normal and regular spaces generalizations of Hausdoff ness Important onissions · Orysdun metrization theory (sives decent sufficient conditions for a

top space to be metricable) (2nd counteble + vegulor)=7 (2nd counteble + normal) · Daysden Lama f (213) B (A) f: X -> [0,[] f (203) This is possible if X is normal, · Tycohoff's Thereon (in arbitry pould of conput spaces is conpart)

Homotopy
\mathbb{R}^{1}	7 R ^y for	$n \neq 1$ via a	connectivity argument
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	f, 5 are hom		$e = e_{X_1 + 5} + \frac{1}{2} + \frac{1}{2$
such that	H(x, o) = f	f(x) for all xes	X J we call H X J a homotopy
"F can b	re continuosly d	etoned into g'	fran f tog

$f_{-}(x) = x$ $g_{-}(x) = 0$	$H(x, t) = x (1-t)$ $R \times I$ $H(x, 0) = x \cdot (1-0) = x$ $H(x, 0) = x \cdot (1-1) = 0$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\overline{\mathcal{R}}$

 R^{L} R^{L} 19 $C_0(x) =$ $H(4,t) = \times (1-t) + pt$ The identity map on R2 is homotopic We'll see that id:5' > 5' humotopic to 7 13 vot

Homotopy defines an equivalence relation on the continues Suctions X - 5% H(x, E) = F(x)frf Iffrg then grf . . <u>.</u> . . . G9. G(u,t) = H(x, 1-t)(4, 6) > (4, 1-6) -> H(4, 1-6)

If frig al grh is frih? $\frac{1}{2}$ $(y, E) = \begin{cases} H_1(x, 2E) & 0 \le E \le \frac{1}{2} \longrightarrow H_1(y, 1) = g(x) \end{cases}$ $H_{z}(x, 24-1) = \frac{1}{2} \leq t \leq 1 \Rightarrow H_{z}(x, 0) = g(x)$ By Gluens Lenna, H is certimes.