Frody (Opm)
A ret is a function from a directed, set A > X
S & XX VXEA transitivity Va, BEA there exists 864 87,00, 87B
$X, top some \times \epsilon X 2^{j}(x)$ $U, V \in 2^{j}(x) U = V$
Conversion of nots: $X_{\alpha} \rightarrow X$ if for all $U \in \mathcal{Y}(x_{\beta})$ there exists $x_{0} \in A$ site if $x \neq x_{0}$, $x_{0} \in U$.

Next HW. Not have unique limits ilf the space is Hausdorff. VEX, XEV iff the exists a net in V converges to X X, Y $f: X \rightarrow Y$, f: z continues iff whenever $X_{0} \rightarrow X \text{ in } X$, $f(x_{0}) \rightarrow f(x_{0}) \rightarrow f(x_{0})$ in Y. Teaday: characterie compuetness using nets. Recall: a metric spice is comput iff it is sequentially compact, every sequence has a conversent subsequence every net has a convegent Subnet

Def: Let ZFZZ be a collection of subsets of Some set X. We say the collection has the finite
intesection poperty of for my finde collection of Malcos $x_{1,-}, x_{n}$, $\hat{\Lambda} F_{x_{s}} \neq \phi$.
Prop: A topological space Xis comparet, ff wherever 2Fa3xEI is a collection of closed sets MX
with the FIP, $\bigcap_{\alpha} \neq \phi$.
$X = (0, \infty)$ $F_n = (0, \frac{1}{n}]$ closed in X.
$\{F_n\}$ sufisfies the FIP but $\Lambda F_n = \phi$.

 $\{F_{\alpha}\}_{\alpha \in I}$ $\bigcup_{\alpha} = F_{\alpha}$ open 20, 3 del 13 an open cover 201 Vel $\mathcal{O}_{\alpha} = X$ $\angle = 7 \left(\bigcup_{\alpha \in I} \bigcup_{\alpha} \right)^{2} = \chi^{2}$ $e_{z} \wedge u_{x}^{c} = \phi$ [> There exists a fuite subconer (27 () $\underbrace{ \underbrace{ } }_{i=1} \quad \widehat{ } \quad F_{\alpha} = \oint$

Subrets
Let A, B be directed sets.
We say f: B > A is
• increasing if where $\beta_1 \leq \beta_2$ in β_2 , $f(\beta_1) \leq f(\beta_2)$ in A .
• cofinal if for all $x \in A$ there exists $\beta \in B$ with $f(\beta) \ge \alpha$.
Def: Let $(x_{\alpha})_{\alpha\in A}$ be a net. A subret of this
net is a net of the form < x f(B) 7 BEB
where f: B > A 15 increasing and cofinal.
$f(\beta) \iff \alpha_{\beta} \qquad \qquad$

A, B= W Morcusory, cofinal f: B=A Shot necessarily strictly increases cofuil (=> f(b) is not build above. 1-1,2-1,3-1,4-94,5-5,6-6, Subsequences at sequences are subrets, $\begin{cases} \times n \end{cases} \\ N = 0 \end{cases}$ (strictly increasing =7 increasing cofinal) $X_1, X_1, X_1, X_4, X_5, X_6$ Subrets of sequences read not be subsequences.

Ky ----< Xn TREN $\langle \chi_{L21} \rangle_{Z \in \mathbb{R}_{\ge 0}}$ subret. (!) Def: Let X be a top. space and let L'artet be a not in X. We suy XEX is a cluster point of the not of for every open set U containing X and every de A there is d > do with the C.

 $|X_{N}| = |(-|)^{n}$ $\propto > \propto_{o}$ $X_{\mathbb{K}} \in \mathcal{A}$ We suy that a not is frequently on an set W LXa Tac A I for all xo CA there exists x > xo with Xx EW. Propi Let X be a top spuce and let L'aracA be a ret M X. Then XEX is a cluster point of the net iff there exists a subset conversion

Pf. Suppose < Xup BEB is a subset conveging to some X. We wish to show X is a cluster point. Consider an opon set U contains x and some index xoEA. We read to show that thee exists \$7,00 with \$\$ \$\$ \$\$ Pick Bin B with XB > xo (cofuality). Pick Bz in B such that , I BZBZ then XxBE (convergence). Pick B3 in B with B3 > Bi ad Bz (directedness). I claum X_{xB3} E U and x_{B3} > x_o. Indeed X x B3 EU suce B3 > BZ. Moreover $\beta_3 \neq \beta_1$ so $\alpha_{\beta_3} \neq \alpha_{\beta_1} \neq \alpha_0$. (increasing).

Conversely, suppose × is a cluster pourt of <xa/act. Job: Such a subret conversing to X, Consider $B = \frac{2}{2}(U, \alpha) \in \mathcal{Y}(x) \times A: x_{\alpha} \in U_{3}^{2}$ We make this a directed set vid $(U_{1,\lambda_{1}}) \geq (U_{2,\lambda_{2}}) \neq U_{1} \subseteq U_{2}$ and $\lambda_{1} \geq \lambda_{2}$. Given (U, ,) ad (U, a) in B let Uz = U, NUz. Pick à with à zai, az. Nou pick az z à (Uz, à) &B with $x_{x_3} \in O_g$. Then $(U_3, x_3) \in B$ and $x_3 \in O_3$ $(U_{2}, \alpha_{2}) \geq (U_{i}, \alpha_{i}) \quad \overline{c} = 1, 2$

marenson, cotan $\langle \chi_{\chi} \rangle_{(0, \lambda) \in B}$. . · C