Quietrest spuces are an ful.	
Aquestion of Huusdo If spaces read not be Huusdorff.	
Loc Euc Loc Eu munifold a nunifold	
If B is a husus for X, $Z\pi(B)$: BEBZ need not be a busis for X/N	
Lemma: A quotient of a Lindelöf space is Lindelöf.	
RP^{1} $R^{1/1}/\sqrt{2}$	

Exercise: If It: X-> Y is a quotoest mus and X is 2rd countable and Y is locally Eachder ten 1 is 2nd coontable. (loc Euc + lud => 2nd courtable!) Pf & Lemma' Let 20,3 be an open cover of ? Sonce X is Lideloff we can vedue the open cover 2 T (U2) } of X to a coertable subcover $3\pi^{-1}(Q_{k})^{3}$ KCTW Then $Y = \pi(X) = \pi(U \pi'(U) = \pi(U \pi'(U)) = \pi(\pi(U))$ (surjective)) $= \mathcal{O}_{a_{x}}$

Def: Let Xibe atop space, A <u>separation</u> of Xis a put of dissourts non empty open sets U, V such that UUV = X. A space is disonnectal if it admits a separation, Otherrise it is <u>connected</u> .	· · ·
such that UUV = X. A space is disonnectal	· ·
such that UUV = X. A space is disonneutrol	• •
annuis a agomation, citarise of is connected.	
E.g. Z. 13 disconnected	• •
203, Z 203 15 a separtar.	
Q 13 disconnel 1	
$U = Q \cap (-\infty, Jz) V = Q \cap (Jz, \infty)$, is a separation.	
	• •
· · · · · · · · · · · · · · · · · · ·	

Prup: R15 connected.
Pf: Suppose UEIR is open, U7\$ and U7R.
We read to show that 0° is not apan.
Prok LEU and YEU. We will assoure LCY;
the other case is proved subjectly, Let $W = Z W \in U^{c}$: $X < W Z$. Then W is nonnegaty (it can be us γ)
and bounded between by X and hence admits any infimum. V.
Frame elementary unalysis ever internal (V, V+E) 50- E70
intersects W (for otherwse v + E/2 is a lower bud for W)
Hence V& U as U is open, Hure X < V suce X SV
(x is a lower bund for W) and since x + V.
Bat then [x,v) EU for otherwise v is not a lover bend

So W. But then evgey intervel (V-E, utes intosects U
so v is not in the interver of UC and UC is not open.
Convected ness is clearly topologuel (it is preserved by honeos)
Cor: Open intende M IR ane connected.
Prop: If Y is connected and fixed is containing and surjecture ther I is connected.
pf. Suppose fix- ? is continues and Y is disconnected,
Let U, V be a separation of Y.
Then $f^{-1}(v)$, $f^{-1}(v)$ are
• open (cativuity)
· nonenpty (surjectivity)

· lisjourt (set theoretic) Moreover, f'(0) O f'(v) = f'(0) O V = f'(v) = X. So X is dis comented. (361: The muse of a connected space under a containing map 13 connected. Cor: (E-11] 13 connected. (S.M.) ASBEA correcte connected

Note: A space X is connected, If the only subsets of X that we both even and classed wire X and J.
Prop: If $A \subseteq X$ is connected and if U and U are disjonit open sets in X such that $A \subseteq UUV$ that $A \subseteq U$ or $A \subseteq V$.
Pf: If $A \cap V$ and $A \cap V$ are both non-ouply they they form a separation of A . So other $A \in V$ or $A \in U$.
Exprese: 16 & connected?

Prop' Suppose & A 3 dell'is a collection of connectual
setsur X. If NAx ≠ \$ then UAx 3
Courected,
[the orien of connected sets with a scigle point in commun is connected]
Pf: Let A = UA. Suppose U, V are disjourt open sets in A with A = UUV. We read to show that
one of U on V is A and the the other is there empty.
Each Ax is connected and is therefore either contained in U
or MV. But all the Azis have a point in common ad hence must all be contained in the sume option of

ALL Con Thue	0 or Vz Gry 0.	Then $A \subseteq U \subseteq A$,	$5_6 \mathcal{O}=A \text{ad} \mathcal{V}=\phi.$
			· ·
		5 space	