$\chi_{(r)} \xrightarrow{id_{rp}} \chi_{(p)}$ Since TI's 15 CB, SO B Idrp for each i Facts: 1) A (finite) product of Hundooff spaces is Hansdorff. Execise. 2) If Bis a busis for X ad Bz is a bass for X2, ZB, xB2 B, EB, and B2 EB2Z HW 15 a busis for XXXZ.

3) A poduct of two sccard contable spaces is 2nd cantable. XIXXZXXZ (Xix Xz) X X3 X1, X2, X3 $\left(\left(x_{1}, x_{2}\right), x_{3}\right)$ · (· , , , ×2, ×3) HW: (X, x-- x Xn) x Xn+1 13 homes to X, 2-- x Xn+1 Use: CPPT What to show: A product of two monifolds is a muifold $M_i^{d_i}, M_z^{d_z} \sim M_i \times M_z$ G dumenter dit de

X, Y UI UI A, B	
· · · · · · · · · · · ·	2) predot of subspree topologies
· · · · · · · · · · · · · · · · · · ·	These we the sume Please use the first that CPPT is characteristic. Hurt: one of your dursting will be a squire!
Suppose	X ad i me locally Eucliden with dimensions of addy.
ver ver	in to show that Xx; is locally Euc. w/dim dy + ly,

Let (x,y) E X x 7. Job: The exists in your set about (x,y) AA homeo h Rdx Ldy. There exists Ux EX, xEUx and 7: Ux -> Rt is a homes. The ends Uy EY yely of \$: Uy JRdy is a have. Let U= UxxUy. It can bois (x,y). It's a Gasic open set and have is open. Define $F: (U_x \times U_y) \longrightarrow \mathbb{R}^{d_x} \mathbb{R}^{d_y}$ by $\overline{\pm}(x,y) = (\Psi(x), \phi(y)).$ $\left(\begin{array}{c} \mathbf{x} & \mathbf{y} \\ \mathbf{x} \\ \mathbf{x} \\ \mathbf{y} \\$

We will shortly see that I is a here on uplass, from Ux XUy with the prelet top Exercise: For all K, REIN RKXR ~ RK+R Since Ux X Uy will the product top is the sine as Ux Uy ut salosme topolion, I is a hone morphism from UEXIY to IR "x+ dy Lemma: Suppose X, X2, Y, Y2 are top spaces and f: X->Y: are continues r=1, Z,Define fix fz: Xi x Xz > Yi x Yz by $(f_1 \times f_2)(x_1, x_2) = (f_1(x_1), f_2(x_2)),$ Then fix for is containing and more over, I each Si a have one ophism has fixing is a have norphism.

Pf: To show fix fi is continues if suffice to show
$\pi_{\gamma_i} \circ (f_i \times f_z) \not = contairous for i = 1, z_o$
But Try, o (f, x fz) = f; which is continuous.
Suppose euch S: is a homemorphism, Then
$f_1 x f_2 i_3$ invertible ad $(f_1 x f_2)^{-1} = f_1^{-1} x f_2^{-1}$
Which is continues as each fills.
Upshot: A product of an n-manifold with wn n-manifold. 15 an n+m marifold.
New marsfelds S'
$5' \times 5'$ is a 2-minifold $(7^2 + torus)$

T"= , 5'+-- + 5' torns 1 - trings Arbitrary Praducts. Z Xa ZaEA $\frac{1}{\alpha \epsilon A} = \sum_{\alpha \epsilon A} f: A \rightarrow \bigcup_{\alpha \epsilon A} X_{\alpha} : f(\alpha) \epsilon X_{\alpha} \text{ for all } \alpha \epsilon A$ A=20,13 f: 20, 13 -> $f(o) \in X$ fli

Notation X" Each Xa 13 X, A= 20,-, 1-13 , W. Each Xx is X, A= M (X-valued sequences) X X, Y are sets Xa is X for all a A = V2f: インX3 empty? No! Avion of Choice. Is IT Xa

Two natural choices for bases on TT Xa. a act a hox topology CTb: TTU, vac ta is open are basic que sets Subbasis from $T_{\alpha}^{-1}(U_{\alpha})$ $U_{\alpha} \subseteq X_{\alpha}$ is open, M TTXK (UXK) & busic open sets · k=1 · · · Uz x Vx x X. $(\pi_{\alpha}^{-1} (\mathcal{V}_{\alpha}) = T \mathcal{V}_{\alpha}$ Evidently T6 is strictly fire them Tp if

there are in fonitely my factors $(T_k \circ F)(a_A)$ > The Ala $x_{n} \in \mathbb{R}^{k}$ $x_{n} \rightarrow x$ $\pi_{k}(x_{n}) \rightarrow \pi_{k}(x)$ a, > a in X => , Flan) > flan) un RM $f: X \rightarrow \mathbb{R}^n$ fischs, St Trofis. $T_{k}(f(c_{n})) \rightarrow T_{k}(f(c_{n}))$