\tilde{F} fis des =7 fis des Z · · A We will suy that a topology on A satisfies the char property of the subspace topology if whence f:Z>A is a map that f is at if if of is ats, The characteristic paperly is characteristic"

Let As be A will the subspace topology Let Ar be A will some random topology satisfy the chor. Wart to show As = Ar. (A, T_5) (A, Z_r) Ids, As > Ar Idvis: Ar > As Idris = Idrin As= Ar of these two maps are continuous

Ĩ) X (I) prin Idr, n J í Ar ian Juas As To Jún $A_r \xrightarrow{Id_r} A_s$ As ----- An Idsur $A_n \longrightarrow A_n$ Idrr From D, since Idr, r is cts, since Ar satisfies the CPST, CAr is continuous, Becase As satisfies the CAST diegram I and the continuity of itry, Idris is continuas, Funn diagrum III) an analogous argument shows Idzy is its,

Prop: Suppose X is a top spuce and ASBSX. Then the subspue topologies on A as a subset of Bor X coincide. Pf: Let AB and Ax denote the two subspace to pulayies. We'll show that AB = Ay by showing AB sutisfies He char property of the subspace topology wind, X. Let f: Z > AB be a mip, and consuler Ĩ Ĵ iB F B JiAB $Z \xrightarrow{f} A_{B}$

Suppose f is continuous. Then f= cpo cho f ~ composition of continues fuctions and is cts, Conversely, suppers I is its, Fram the CAST on B we conclude f is its and from the CPST applied to AB we find f is cts. Def: A map f: X->Y is a topologuent ourbeelding if fis a homeonorphism onto f(X) (with the subspace top.) Necessory: 1) f is continues (sorgeotury is free!) 2) f is injective

- 7 🔪 ···· · · · · · · · **7** . . . / ! ~) · · · · C . / . (λ, O) X

 $\pi:\mathbb{R}^2 \to \mathbb{R}$ # (x,y) = UER f:U>R, contanues Graphof F If = 2 (x, f(x)) ER" : xEU 3 I:U > Rntk 3 a top ombalding. F(2) = (4, f(x)) I is clearly injecture and continues. Its musice is just projection restricted to If als its.

$f: \mathcal{V} \rightarrow \mathbb{R}$	· · · · ·	· · · · · ·
5^2 is a mutifield.	 	· · · · · · ·
Hausdorff, 2 nd courtable are free (from (R ³)	· · · · ·	
$S_{+}^{2} = 2 \times \epsilon S^{2} : \times_{3} 703$ $S_{+}^{7} = 13$ an open subset of S^{7} :	· · · ·	· · · · · ·
a) $(0, \infty)$ is open in \mathbb{R} , b) $T_{13} : \mathbb{R}^3 \to \mathbb{R}$ $T_3(x_1, x_2, x_3) = x_3$ is continue,	· · · ·	· · · · · ·

c) $T_{13}^{-1}((0,005))$ is open in \mathbb{R}^3 $d) S_{+}^{2} = S^{2} (T_{3}^{-1}((0,\infty)))$ We sure earlier that S_{+}^{2} is homeomorphic to an open subsch of \mathbb{R}^{2} . Bat 5's has the some topology as a subspace of 5? St is an open set on 5² that is knownorphic to an open set in R?. Now consider #:52-952 $F(x_{14,2}) = (x_{14,-2})$ This is contained (TR > R³ and then by restricting (B²-5)

and is its own inverse. It's a hancomorphism, $f(S_{+}^{2}) = S_{-}^{2} = \frac{2}{2}(x_{4},z) \in S_{-}^{2} = \frac{2}{2}(x_{5},z) \in S_{-}^{2}$ $\overline{F}|_{S_{+}^{2}} \xrightarrow{S_{+}^{2}} \xrightarrow{S_{-}^{2}} S_{-}^{2}$ is a horsomorphism and 52 13 epen 1 53. Consequently 52 is on open set in 52 nel have applic to an open set in IR?. 13 a trused 52 - 52 $\overline{\Phi}(Y,Y,Z) = (Z,Y,X)$

1 King a standard a series a <u>|</u>. . . X ·/ · ·]

 $\rightarrow \mathbb{R}^{n}$ A. metric $f(x) = (S_1(x), ..., f_n(x))$ Ezzz ZLERM MX 2K>2 C7 f(4)~ Cfx. 24: 3 2

ZERS M Ru convers ist each T(ZK) converses