The components of 7 are called coordinates
$\mathcal{Z}(\rho) = (\mathcal{Z}_{1}(\rho), \mathcal{Z}_{2}(\rho)) \qquad ()$
Chupter 3 New spaces from old.
Given a subset A = X we'll put a intern topology on A.
We've already seen that if UEX is open, it has a topology
comparishes of the open sets in X contained in U.
If X is a metric space and A = X then A inherits q
metric and hus a metric spice topology.

A set Win a motive space is open of Sar all KEW I roo s.t. Br(x) EW. If ASX « metric space ad act $B_r^A(a) = B_r^X(a) \cap A$ $\frac{1}{2} \times c A; d(x,a) < r$ Suppose UEA is open. They $U = \bigcup_{a \in A} B_{r_a}^{A}(a) = \bigcup_{a \in A} \left(B_{r_a}^{X}(a) \cap A \right)$ $= \left(\begin{array}{c} B_{r_a}^{\times} \left(a \right) \right) \cap A$

 $() \cap A$ soper in X Every open set in A is the intersection of an apon set in X with A. Conversely suppose $\hat{U} \in X$ is open and let $U = \hat{U} \cap A$. If a E U then a E U so there exists MO with $B_r^{\times}(a) \subseteq \hat{U}$. But then $a \in B_r^{\times}(a) \cap A \subseteq \hat{U} \cap A = U$. $B_{\Gamma}^{A}(a)$ $B_{r}^{A}(a) \in U$ Si U is open in A.

Open sets in A are precisely open sets in X intersected with A.
Def: Let X be a top space and let A=X.
The subspace poly on A 13
$\mathcal{Z}_{\mathcal{A}} = \frac{3}{2} U \Lambda \mathcal{A} : U \text{ is open in } \chi 3$
Exercise: TA is a topology.
Preperties of the ambient space X are after inherited by ASX.
Prep: Suppose X is Housdorff. Then A = X is also Housdorff.
$Pf:$ Let $a_{c}, a_{z} \in A$ with $a_{i} \neq a_{z}$.
Since X is Hursdoff we can find open sets \hat{U}_{i}, \hat{U}_{z} in X such that $a_i \in \hat{U}_i$ and $\hat{U}_i, \hat{U}_z = \phi$.

Let U:= GAA 50 U; is open in A. Clerly each a; EO; and the sets O; ac disjourt. Prop' If B is a busis for X ad A A = X Hey B=ZBNA: BEB3 a basis for the subspice topology on A. Pf: Observe, by the definition of the subspace topology and the fact that elements of B we apen in X, early BGB 13 open in A. Moreaver, suppose UEA is open and ac U. There exists U, open in X, such that U= UNA. Since B is a busis for X there exists BEB such that a e B E O. But then a E B NA E ONA= U. Since BIAEB, Bis a basis.

Cor: If X is second countable and $A \subseteq X$ then A is second countable.
Exoruse. If X is first compile and AEX then A is 1st controlle.
\mathbb{R}^3
Note If A = X and X is a metric space the the subspace top on A is precisely the metric space top on A.

$A \subseteq B \subseteq X$
La hus two topolosies!
$A \in B$ so A has the subspace top as a subspace of B \mathcal{Z}_{A}^{B}
$A \in X$, Z_A^X Are the same?
" Characteristic Propety of Subspie Topology"
$A \in X$
$A \xrightarrow{c_A} X$
$\dot{c}_A(x) = \alpha$

Is if continuous?
Suppose Q is open in X,
$i_{A}(\hat{U}) = \xi_{a} \in A: i_{A}(a) \in \hat{U}$
$= 2a \in A: a \in \hat{G}$
= ûnt which is appen in t.
1es, úp 3 continuers.
In furt, if A hus a topology had ig : A > X is
continues with nec pect to \mathbb{C} than $\mathbb{C}_A \subseteq \mathbb{C}$.
Subypro
The subspace topology is the coursest topology on A
such that is contaileous.

Consider a function $f: Z \rightarrow A$
otte-top space,
$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$
$\hat{f} = \hat{c}_A \circ \hat{f}$
$Z \longrightarrow A$
If f 13 continuous then f 13 a composition of continuous
Functions and is breace continuous. What of is continuous? Is f continuous?
Let $U \in A$ be open in A. Then $U = \hat{U}A$
for sume open set U in X.
· · · · · · · · · · · · · · · · · · ·

Bat then				
$f^{-1}(v) = f^{-1}(\hat{v} \wedge A)$	• •			• •
$= \int^{-1} \left(\dot{c}_{A}^{-1}(\hat{G}) \right)$	· ·	· · ·	· · ·	· · ·
$= (i_{\star} \circ f)'(f)$	· ·	· ·	· ·	• •
$=\hat{f}'(\hat{O})$	· ·	· · ·	· · ·	· ·
which is open in Z. thuce f is confilments,	· ·	· ·	· ·	· ·
Prop (Char Properly at Subspace Topology)	· · ·	· · ·	· · ·	· · ·
If X is a top. Spue ad AEX that a mop	· ·	· ·	· ·	· ·
f: Z > A for som top space Z is containing	• •	• •	• •	
iff is continuous	· ·	· ·	· ·	• •

CAP\$ 7 JOA 2 ->> A Map into A are continuers. If They are continuers if thought at as continues into the ambient space. Consequerce : we an vestriet colonnin without affecting containing, is continues and f(Z) = A C X IA f:Z->X then f: Z >> A continuous,

On the other hud we an also restrict domains and preserve Continuity. Prop- If f: X>Y is continues and ASX they fl.: A > Y is continuus, $f)_A = fo \tilde{u}_A$

 $A \subseteq B \subseteq X$ $T_{S} \quad \mathcal{Z}_{A}^{B} = \mathcal{Z}_{A}^{X} \quad \mathcal{Z}_{A}^{A}$ $id^{BX}: (A, Z^{B}_{A}) \rightarrow (A, Z^{X}_{A}), id^{BX}(a) = q$ $id^{\times B}$: $(A, Z_A^{\times}) \rightarrow (A, Z_A^{\times}), id^{\times B}(a) = a$ Cleanly id BA is a bijection will inverse id XB The show $C_A^B = C_A^X + sufferes to show$ id ad id are contanuers,