First courtedility: YPEX Thee is a courtable collector EQRE of open sets cantures p such that So-al open sets l' contains & there exists I with $p \in U_{k} \subseteq U.$ First caustable spaces: $x \in \mathbb{R}$ (x - h, x + h)metric Spreses $\mathcal{O}_{n} = \mathcal{B}_{i_{n}}(p)$ X, discrete

Def: A restard ribbed basis at PEX is a countable shift basis at p 30k3 with WKHI SWK for all k. $(k_1, 7, k_2 \Rightarrow 7, W_{k_1} \leq W_{k_2})$ Lenna: A point pEX udmits a countable rished lassis iff it admits a rested rough Pf: (of non obvious direction) Suppose ZWLZ is a courtable right busis at p. For each k lefue $\hat{W}_{k} = \tilde{\Pi} W_{k} I clum Mut 2W_{k}^{2}$ 13 a rested rolled basis. Clearly this is a courtable collection of rested open sets al here it suffices to slow

that it is a right basis of p. Let U be an open set contains p. Thee exists some to with $p \in W_{k} \subseteq U$, But $|\hat{u}_{k} \subseteq |\hat{u}_{k} \Rightarrow p \in \hat{w}_{k} \subseteq W_{k} \subseteq U$, \square In furst countable spaces we can frequently argue alout closures Using soquerces. Lemma 2,48 in the text has sever fluos of this. Lemmi Let X be first coertable and let ASX. The pEA ist the exists a sequence ret conversing to p. Pf If a sequere in A converses to p then pis contract point of A and hence pe A.

Conversely, suppose PEA and is have a contact point of A. Lot ZWK3 be a rested rold base at p. Since pis a contact pourt of A for each k we an find ak E WENA. To see that ak >p let U be an apon set cartainy p. The explana WK with PEWKEU. If K7K then $a_k \in W_k \subseteq W_k \subseteq U$. It's hand to find examples at non fast could be spaces. (HW) Det: A spice is 22 countable if it almits a coertable basis,

1) 2nd countable => farst countable. Obseintions 2) The discrete topology on IR is not 2nd countable. XEB = 2×3 3) IR 15 2nd controlle. (a,b) acb, a,bell 4) R2 is 2rd coventable. Balls with natural radii and certers with rational coords.

Def. A topological space is separably if it admits a constable dense subset.
2 rd countible => separable
ZWEZ REWE Nous show ZPEZ & luse.
$(A \land dere \land X \land f \land A = X)$
i.e., ende x m X is a contact pourt of A)
Def: Let X be a top sprice. A collection
322 3 arei at open sets is an april cover
f X f UQ = X,

Det: A topological space X is Lindelöff of every open cover at X admits a countable subcover. ["just short" of compact] Proposition: Every 2nd countable space is Lindeloff. Let 20, 3 det be an open cover at the 2nd counteble sprie X. Let ZWK3 be a contable buss for X. Let 24 be the set of indices k such that We EVa for some a. For each k = 7 we can then puck dk with $W_{E} \subseteq U_{\alpha_{E}}$.

I claver that 20x 3 covers X. ke K Lot pt X al pick some Ox with pECh. Since 2423 are a busis the exists WE with $p \in W_k \subseteq U_{\alpha}$. Observe that $k \in \mathcal{H}$. Honce pEWK CUdy for sure ECX. 2nd countable => 2 separable all of these are independent and so combinations [Lindelöff Teels ac a verise Enplication,

Prop II X is 2nd countrible and U is open MX then U is 2nd countrible.	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	•
It sketch: Let B be a counteller lossis for X . Let $B' = 2$ $B \in B$; $B = 03$	· · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · ·	•
	· · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · ·	•
	· · ·	· · ·	· ·	· ·	· ·	· ·	•
Manifolds	· · ·	· · · · · · · · · · · · · · · · · · ·	· · ·	· · ·	· · ·	· · · · · · · · · · · · · · · · · · ·	•
A muisdel is a top space that "looks like" locally with the same in at easy point.	Ry	· · ·	· ·	· · ·	· ·	· ·	•
	· · ·	· ·	· ·	· ·	· · ·	· · ·	•

Def: A spice	X is locally Eveliden with dimension NEW
	PEX admits a reighborhead U homecomorphic to R ^h .
Alternativs	$\mathbf{B}_{1}(0) \in \mathbb{R}^{n} (1) (0, 0) = (0, 0)$
	• $B_r(\tilde{o}) \in \mathbb{R}^1$ for some r
	• $U \subseteq \mathbb{R}^{1}$ where U is open.

Br Ŧ V P $\boldsymbol{\alpha}$ $\underline{F}(b_r(x)) \rightarrow B_r(x)$ F un. $B_{r}(x)$ 17 hereonophism a