Det: A set A is dense in X if $\overline{A} = X$. Ever point of X is a contact pourt of A. Det: Let XEX. A neighborhood of x is an open set containing x. The collection of all such neighborhoods of x 15 denoted U(x) and called the reishborhand buse at x

Continuity	. .	<td< th=""></td<>
Metric space version	· · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · ·
$f: X \to Y$	· · · · · · · · · · · · · ·	· · · · · · · · · · · · · · ·
cts of whenever $x_n \rightarrow x_n$	$f(x_n) \rightarrow f(x)$	
Alteratue:
fis cts', f for every XEX exuits \$>0 such that	ad every E>O Hore	• • • • • • • • • • • • • • • • • • • •
		$remarder:$ $f^{-1}(w) = \xi_{x} \in X: f(x) \in \{w\}$
	\mathcal{E} $\mathcal{F}(\omega)$	

Prop: f 13 cts ET it is cts' Pf: Suppose f is and suppose xn->x in X. We need to show f(4n) -> f(x). Let e 70. Pick \$70 so that $f(B_s(A)) \subseteq B_e(f(x))$ Pick N 50 that if uzi N xn E Bg(x), But then if n = N, since $x_n \in B_{\mathcal{S}}(A)$, $f(x_n) \in B_{\mathcal{E}}(f(x))$. So $F(x_{\lambda}) \rightarrow F(x)$ Convesely suppose fis not cts'. So there is some xxX and on 270 such that for all 670 $F(B_{S}(x)) \notin B_{\varepsilon}(F(x))$, But then for each n EIN we can pick Xn & By (X) with f(xn) & BE(f(x)), But then xn=x but $f(x_n) \not\rightarrow f(x),$

Def: f is cts", f whenaver UEY is open,
$f^{-1}(v)$ is open in X,
P_{Vop} : $f_{13} dt_{0}' dt_{7}' dt_{7}''$
Pf: Suppose f 13 cts! Let U SY be open
and puck $x \in f^{-1}(0)$. Since 0 is open and since
$f(x) \in U$, there exists $\varepsilon > 0$ with $B_{\varepsilon}(f(x)) \subseteq U$.
Since f is its' there exists \$20 so that
$f(B_{\varepsilon}(x)) \subseteq B_{\varepsilon}(f(x)) \subseteq O.$
That is, $B_{\delta}(x) \in f^{-1}(U)$ and $f^{-1}(U)$ is hence open,
Convesely, suppose fis cts! Let xEX and pick E70.
Let $U = B_{\mathcal{E}}(f(x))$ so U is open.

Hence $f^{-1}(0)$ is open and conterves X . But they there exists 6>0 such that $B_{S}(X) \subseteq f^{-1}(0) = f^{-1}(B_{E}(f(x)))$.
Def: Let X, Y be topological spaces.
We say f= X > Y is continuous of whenever U=Y is open,
$f^{-1}(0)$ is open in X.
Examples I) Every continuous function you keeve about before laking a topology class.
$z) f: \chi \rightarrow \gamma'$
$f(x) = y_0$ for all x_1 (f is a constant function)

 $\int_{-\infty}^{-1} (U) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\varphi}{\varphi} + \int_{-\infty}^{\infty} \frac{\varphi}{\varphi} +$ () E (, opm 3) + + \times $\times \rightarrow \times$ $f(x) = x \qquad (f = Id)$ 4) A composition of continuus Surctions is ets, X -> Y ->> Z $(g \circ f)'(0) = \xi \times e \times g(f(x)) \in U3$ = $2 \times e \times f(x) \in g'(0) 3$ open in Z = {x < x : x < f'(5'(0))} $f^{-1}(39^{-1}(2))$

Hundy fucts 1) $f^{-1}(UA_{\alpha}) = Uf^{-1}(A_{\alpha})$ $\alpha \in I$ $z) f^{-1}(\Lambda A_{\alpha}) = \Lambda f^{-1}(A_{\alpha})$ 3) $f^{-1}(A^{-1}) = f^{-1}(A^{-1})^{-1}$ 1) $f(\mathcal{O}_{\alpha \in I}) \doteq \mathcal{O}_{\alpha \in I} f(\mathcal{O}_{\alpha})$ $f(\Lambda \zeta_{a}) \stackrel{?}{=} \Lambda f(\zeta_{a}) \stackrel{?}{=} 0$ f(C) $f(C^{-}) = 2433$ f(c) = 2703

$f(c) = Y > \frac{2}{2703}$
Exercise: Make 2' and 3' correct by chasing = to
an appoprinte inclusion.
Exercise: f: X->% is continues if and only if
whenever VEY is closed, f ⁻¹ (V) is closed,
Det: Let Z, al Zz Le two topologres or X.
We say Z, 13 finer thin Zz (ail Zz 13
courser them Z,) of Z, ZZ.
$f: X \longrightarrow Y$

The fiver the topology on X and the course the topology on Y The easier it is for I to be continuous. A good tepology strikes a ballace between hurs too Serv ad too muy open sets. f: XJrsc -> Y 13 almays containers. fix -> Yind 13 always continues, Xind -> R -> X disc Challage: I and g are continues iff they are const. Def: A mip f: X-> Y open if f(U) is open in Y whenever U is open in X closed if f(V) is closed in Y whenever V is closed in X.

HW: cts, open, closed are all independent Def: A map f: X > Y is a homeomorphism of t 13 a bijection, is continuens, and has a continues proose.