Defi Let X be a set. A topology on X is a collection Z of subsets of X satisfies
i) $z = \frac{2}{2}X, \frac{4}{3}$
z) If $\xi \cup_{\alpha} \xi_{\alpha \in I} \in \mathbb{Z}$ then $\bigcup_{\alpha \in I} \bigcup_{\alpha \in \mathbb{Z}} \xi \in \mathbb{Z}$
3) If $U_1,, U_n \in \mathbb{Z}$ then $\hat{\Lambda} U_k \in \mathbb{Z}$.
We call the elements of T open sets and (X, Z) is a
topological space.
Lost class we sur flat the open sets in a metric space satisfy 1) (62). They also satisfy 3) and here form a topology on X.
Pf: Soppose $Q_{1,,}$ Q_n are open sets in a metric space. Let $x \in \hat{\Pi} U_k$. Since each Q_k is open we can find vadii v_k
such that $B_{r_k}(x) \leq U_k$. Let $r = \min_{k=1n} r_k$. Then for each

	and hence $B_{V}(x) \subseteq \bigwedge_{k=1}^{n} \mathcal{O}_{k}$.
Every metric induces a topulogy	a set
Observe that di, dz and do	all induce the same topology or R?
Question: Is every topology the	topology induced by some metric?
Two trivint and fundamental topol	ogres
1) Lugest possible topology	\sim \times
C = P(L) Single here are open.	$d(x,y) = \begin{cases} 1 & x \neq y \\ 0 & x = y \end{cases}$
	$z_{\pm} z = \beta_{i_{1/2}} (z)$
2) Smillest possible tepology X	

2=2¢, X3 "indiscrete topology" If X has more than one cleast they it is not induced les any metric. Suppose XyEX XXY and disa metric on X. Let r> d(x,y). Since x+y, r>0 Consular Br/2 (x). This ball is open, can tarries x and excludes y. Suce Briz (x) = X ad = \$\$, the metric does not induce the indiscrete topology Def: A topological space is metitude of its topology is induced by some metric.

As for metric snaces, a set VEX is closed if V=XIV is que In every space both X and \$ are closed. De Morgan's Lunes $\left(\begin{array}{c} U \\ \alpha \in I \end{array}\right)^{C} = \bigwedge_{\alpha \in I} A^{C}_{\alpha}$ $(\Lambda A_{\alpha})^{c} = (\Lambda A_{\alpha})^{c}$ det Exercise: Use these to show that an aribmy interaction of closed sets is closed and a functe onion of closed sets B closed,

Exercise: For all 1770, Br(x) is a closed set, (triangle megality)
$e_{i}g_{i}$ $\begin{bmatrix} -1, \end{bmatrix}$ is closed in \mathbb{R} , $\overline{B}_{i}(\delta)$
Vaguely: topologies encode a notion of "newness" and "adjacacy"!
Def: Let $A \subseteq X$ (a topological space),
The interior of A (Int(A)) is the union of all open sets continued in A.
The closure of A, A, is the intersection of all closed sets containing A,

 \rightarrow Inf(A)Observe that the interior of A is open. Exercise: it is the largest open set contained in A. lazerst implies my open set in A is contained on Int A. Observe that the closure at a set is closed and it is The smallest closed set that contains A, A point x = X 13 a contract point of A if wherever U 13 an open set containing x, Def. $U \cap A \neq \phi$.

	(-1,1) = R [-1,1] ~ contact poonts
· · · · · · · · · · · · · · · · · · ·	RER contact points: R
Preposition : Given ASX, À 13 contact points of A.	preisely fle set et
Pf: Lot A denote the content po	arts of A.
Suppose $x \in A'$. Then there exis $x \in O$ but $O \cap A = \phi$. Let	V=U. Then X&Y U3
closed and $V \ge A$. Since $\overline{A} \le$	
Suppose $x \notin \overline{A}$. Then there exists $A \subseteq V$ but $x \notin V$. Let O and $O \land A = \phi$. So $x \notin A$	= V^{c} . Then $x \in U$, U is open,

Contact points are pourtes that use either in A or are adjoent to A. Def. Given ASX, a pourt XEX is a lunit point at A of every open set containing x contains a pourt from A that is different from X. Def. The exterior of A is $(\overline{A})^c$. We write this as Ext(A), Note: $x \in E_{xt}(A) \iff \exists U, open, x \in U, UNA = \phi.$

What we the points that we adjacent to both A and A This is the boundary of A, $\partial A = A \cap A^{c}$. - Lext's det. Prop 2,8 (Unwieldy collection of Jects)