Metric Spaces Recall Def: A metric space is a set X together with A: XXX -> R satisfying 1) d(x,y) = 0 $\forall x,y \in X (d(x,y) = 0$ 67 X=Y 2) $d(x,y) = d(y,x) \forall x,y \in X$ 3) $d(x,y) \in J(x,z) + d(z,y), \forall x,y,z \in X$ > tribuste inequality

1) \mathbb{R} d(x,y) = |x-y| (Exercise!) 2) $\mathbb{R}^{2} \| \| \|_{2} = (x_{1}^{2} + x_{2}^{2})^{1/2} (l_{2} norm)$ $(X = (X_1, X_2))$ $d(x,y) = ||x-y||_{z}$ (Execise!) Cauchy - Scientes in eq. X . Y = 11x112 114/2 COS 07 3) $\mathbb{R}^2 ||_{X}||_{Y} = |_{X_1} + |_{X_2}$ $d(x,y) = || x - y||_{1} \quad (E_{xecise!})$

	$\ \chi \ _{\infty} = \max \left(\chi_i \right) \chi_2 $	
	$\int_{\infty} (x, y) = \ x - y\ _{\infty}$	(Execise)
	is any set	
. .	$J(x, y) = \begin{cases} 1 & x \neq y \\ 0 & x = y \end{cases}$. .
· · · · · · · · · · · · · · ·	(discrete metric)	

6) X = C[0,1], continuus fundiors on Loui] La [0,1] -> R $\|f\|_{2} = \int_{0}^{1} |f(x)|^{2} dx \int_{0}^{1/2} L^{2} nom$ $d(f,g) = ||f-g||_2$ L² distance || X || = meix (|x,1, |x2) 7) $\chi = C[0,1]$ $\|f\|_{\infty} = \max |f(x)|$ $d_{1}(f_{1}, g) = (1) f_{1} - g(1) g_{0}$

Let (X, d) be a metric space.	•
We say Exa3 converses to x in X if	•
$\lim_{n \to \infty} d(x_n, x) = 0.$	•
$\int \text{for every } \mathcal{E} \neq \mathcal{O} \text{there exists } \mathcal{N} \in \mathcal{N} \text{ such that rf}$ $n \geq \mathcal{N} \mathcal{O} - \mathcal{d}(\mathcal{L}_{n,X}) \leq \mathcal{E}$ $\mathcal{d}(\mathcal{L}_{n,X}) \leq \mathcal{E}$	· · · ·
$f_n(x) = x^n (CL_{0,1})$	٠

1. . . **Y** 1.1 wort. L'alistance $d(S_{n}, 0)^{2} = \int_{0}^{1} (x^{n})^{2} dx = \frac{1}{2n+1}$ $\lim_{n \to \infty} d_2(f_n, 6) = 0 \implies f_n = 0$ 1-JED do(fn, 0) = 1 for all n, 2f, 3 does not converse writ of nomy

Def: Suppose $f: (X, d_X) \rightarrow (Y, L_Y)$.
We say f is <u>continuuus</u> if wherever $x_n \rightarrow x$ in X_j $f(x_n) \rightarrow f(x)$ in Y .
E.g. f: R-> R, continuitily on Math 401 serse,
E.g. (X,dx) on metric space. YEX fixed.
$f(z) = d(z, \gamma)$
Fis continues. Exercise?
[Trimple inequality!]

Diffeent metrics on a set provide diffeent notions of
Continuity,
X = (0, 1]
$M: X \rightarrow \mathbb{R}$ $M(f) = \max f(x)$ $x \in [0,1]$ $T_5 M continuous$. $T_5 M continuous$.
With respect to L ² distance?
$f_a = x^{a}$
$M(f_n) = 1 \qquad f_n \to 0$ $M(f_n) \to M(o) ? \qquad Nopc.$

Ederise: M 13 continues wort. Les distance. Note: The metric shows up on indirectly in the notion of continuity was the notion of conversace. If two different metrics determine the same notion of convesence they they determine the sine continues functions. $d_2 = 5 \lambda_1$ These detenue De sine convegent sequences

· ·	•		\bigcirc		:[[22	-		H	0	• •		l' L'		l	· · ·	. (a	() () () () () () () () () () () () ()	la	с С		d	5 f	we	s S		~		Je	fe	m A	e	•		•		· ·	
•••	•	•	••••	11	e	•	50	ne	•	· ·		14	ese	rt	•	5	eg	i	LCE	25.	•	•	•	••••	•	•	•	••••	•	•	•	•	• •	•	•	•	•	••••	•
• •	•	•	• •					•	•	• •	• •	•		•		•	•		•	•	•		•	• •	•	•		• •		•	•	•	• •				•		
· ·	•	•	· ·	•	•	•	•	•	•	• •	• •	•	•	•	•	•	•	• •	•	•	•	•	•	• •	•	•	•	••••	•	•	•	•	· ·	•	•	•	•	•••	•
•••	•	•			•			0	•	• •		•		•		•	•	· ·	•	•			•	••••	•	•		· ·		•							•	• •	
· ·	•	•	· ·	•	•	•	•	•	•	• •	· ·	•	•	•	•	•		· ·	•	•	•	•	•	••••	•	•	•	· ·	•	•	•	•	· ·	•	•	•	•	· ·	•
• •	•	•	• •		•	•	•	•	•	• •	• •	•		•	•	•	•	• •	•	•	•	•	•	••••	•	•				•	•	•	• •	•			•		
· ·	•	•	· ·	•	•	•	•	•	•	• •	• • • •	•	•	•	•	•	•	· ·	•	•	•	•	•	• •	•	•	•	· ·	•	•	•	•	• •	•	•	•	•	· ·	•
· ·	•	•	· ·	•	•	•	•	•	•	• •	· ·	•	•	•	•	•	•	· ·	•	•	•	•	•	••••	•	•	•	· ·	•	•	•	•	· ·	•	•	•	•	· ·	•
••••	•	•	•••	•	•	•	•	•	•	• •	••••	•	•	•	•	•	•		•	•		•	•	• •	•	•	•	• •	•	•	•	•		•	•	•	•	• •	•
· ·	٠	٠	• •	·	0		٠	•	0	• •	• •	•		٠		٠	٠	• •		0	٠	٠	•		٠	٠	0	• •	٠	•	•	٠	• •	٠	•	0	٠	• •	٠
· ·	•	٠	• •	·	0	0	٠	٠	0	• •	• •	•		٠		٠	٠	• •	٠	0	٠	٠	•		٠	٠	0	• •	٠	•	٠			٠	•	0	٠	• •	٠
• •	•	•		•	•	•	•	•	•	• •	• •	•	•	•	•	•	•	• •	•	•	•	•	•	• •	•	•	•	••••	•	•		•	• •	•	•	•	•	• •	