1. Exercise 0.1 (Solution by John Gimbel)

If a and b are even integers, then so is $a+b$.

Solution:

Let a and b be even integers. Then there exist integers j and k such that $a=2 j$ and $b=2 k$. But then

$$
\begin{equation*}
a+b=2 j+2 k=2(j+k) . \tag{1}
\end{equation*}
$$

Since $j+k \in \mathbb{Z}, a+b$ is even.
2. Exercise 0.2 (Solution by Jill Faudree)

Let X be a set.
a) An intersection of topologies on X is a topology on X.
b) A union of topologies on X need not be a topology.

Solution, part a:

Let $\left\{\tau_{\alpha}\right\}$ be a family of topologies and let $\tau=\cap_{\alpha} \tau_{\alpha}$. Observe that \varnothing and X belong to τ as they belong to each τ_{α}.

Suppose $\left\{U_{\beta}\right\}$ is a family of sets in τ and let $U=\cup_{\beta} U_{\beta}$. Fix α and observe that each $U_{\beta} \in \tau_{\alpha}$. Since τ_{α} is a topology, $U \in \tau_{\alpha}$. Since α is arbitrary, $U \in \cap \tau_{\alpha}=\tau$.
The proof that a finite intersection of sets in τ belongs to τ is essentially similar.

Solution, part b:

Let $X=\{1,2,3\}$. Let $\tau_{1}=\{\varnothing,\{1\}, X\}$ and let $\tau_{2}=\{\varnothing,\{2\}, X\}$. It is easy to see that these are topologies. Let $T=\tau_{1} \cup \tau_{2}=\{\varnothing,\{1\},\{2\}, X\}$. Observe that T is not closed under taking unions as $\{1\}$ and $\{2\}$ are elements of T but $\{1,2\}$ is not.
3. Exercise 0.3 (Solution by Elizabeth Allman)

Let X be a metric space. Showt that the collection of open balls in X forms the basis of a topology.

Solution:

We start with a technical lemma.

Lemma A: Suppose $B_{1}=B_{r_{1}}\left(x_{1}\right)$ and $B_{2}=B_{r_{2}}\left(x_{2}\right)$ are open balls in X an $x_{3} \in B_{1} \cap B_{2}$. Then there is an $r>0$ such that $B_{r}\left(x_{3}\right) \subseteq B_{1} \cap B_{2}$.

Proof. Let $r=\min \left(r_{1}-d\left(x_{3}, x_{1}\right), r_{2}-d\left(x-2, x_{2}\right)\right.$ and observe that $r>0$. Now suppose
$z \in B_{r}\left(x_{3}\right)$. The triangle inequality implies

$$
\begin{aligned}
d\left(x_{1}, z\right) & \leq d\left(x_{1}, x_{3}\right)+d\left(x_{3}, z\right) \\
& <d\left(x_{1}, x_{3}\right)+r \\
& \leq d\left(x_{1}, x_{3}\right)+\left(r_{1}-d\left(x_{3}, x_{1}\right)\right) \\
& =r_{1}
\end{aligned}
$$

Hence $z \in B_{r_{1}}\left(x_{1}\right)=x_{1}$. Similarly $z \in B_{2}$, and hence $B_{r}(z) \subseteq B_{1} \cap B_{2}$.
Let \mathcal{B} be the collection of open balls in X. Fix $x \in X$ and note that $\cup_{r>0} B_{r}(x)=X$. Hence \mathcal{B} covers X. Moreover, by Lemma A, \mathcal{B} satisfies the refinement property. Hence by the topology construction lemma, \mathcal{B} generates a topology on X, and the open sets are simply the unions of open balls.

