1. Exercise 0.1 (Solution by John Gimbel)

If *a* and *b* are even integers, then so is a + b.

Solution:

Let *a* and *b* be even integers. Then there exist integers *j* and *k* such that a = 2j and b = 2k. But then

$$a + b = 2j + 2k = 2(j + k).$$
(1)

Since $j + k \in \mathbb{Z}$, a + b is even.

2. Exercise 0.2 (Solution by Jill Faudree)

Let *X* be a set.

- a) An intersection of topologies on *X* is a topology on *X*.
- b) A union of topologies on X need not be a topology.

Solution, part a:

Let $\{\tau_{\alpha}\}$ be a family of topologies and let $\tau = \bigcap_{\alpha} \tau_{\alpha}$. Observe that \emptyset and X belong to τ as they belong to each τ_{α} .

Suppose $\{U_{\beta}\}$ is a family of sets in τ and let $U = \bigcup_{\beta} U_{\beta}$. Fix α and observe that each $U_{\beta} \in \tau_{\alpha}$. Since τ_{α} is a topology, $U \in \tau_{\alpha}$. Since α is arbitrary, $U \in \cap \tau_{\alpha} = \tau$.

The proof that a finite intersection of sets in τ belongs to τ is essentially similar.

Solution, part b:

Let $X = \{1, 2, 3\}$. Let $\tau_1 = \{\emptyset, \{1\}, X\}$ and let $\tau_2 = \{\emptyset, \{2\}, X\}$. It is easy to see that these are topologies. Let $T = \tau_1 \cup \tau_2 = \{\emptyset, \{1\}, \{2\}, X\}$. Observe that T is not closed under taking unions as $\{1\}$ and $\{2\}$ are elements of *T* but $\{1, 2\}$ is not.

3. Exercise 0.3 (Solution by Elizabeth Allman)

Let *X* be a metric space. Showt that the collection of open balls in *X* forms the basis of a topology.

Solution:

We start with a technical lemma.

Lemma A: Suppose $B_1 = B_{r_1}(x_1)$ and $B_2 = B_{r_2}(x_2)$ are open balls in X an $x_3 \in B_1 \cap B_2$. Then there is an r > 0 such that $B_r(x_3) \subseteq B_1 \cap B_2$.

Proof. Let $r = \min(r_1 - d(x_3, x_1), r_2 - d(x - 2, x_2))$ and observe that r > 0. Now suppose

 $z \in B_r(x_3)$. The triangle inequality implies

$$d(x_1, z) \le d(x_1, x_3) + d(x_3, z)$$

< $d(x_1, x_3) + r$
 $\le d(x_1, x_3) + (r_1 - d(x_3, x_1))$
= r_1

Hence $z \in B_{r_1}(x_1) = x_1$. Similarly $z \in B_2$, and hence $B_r(z) \subseteq B_1 \cap B_2$.

Let \mathcal{B} be the collection of open balls in X. Fix $x \in X$ and note that $\bigcup_{r>0} B_r(x) = X$. Hence \mathcal{B} covers X. Moreover, by Lemma A, \mathcal{B} satisfies the refinement property. Hence by the topology construction lemma, \mathcal{B} generates a topology on X, and the open sets are simply the unions of open balls.