1. The point of this exercise is to settle some details from the proof of the Brower fixed point theorem. We suppose $f: \mathbb{B} \rightarrow \mathbb{B}$ is continuous and that f does not have a fixed point.
a) Prove that for all $x \in \mathbb{B}^{2}$ there exists a unique $t(x) \in[1, \infty)$ such that $f(x)+t(x)(x-$ $f(x)) \in S^{1}$.
b) Define

$$
r(x)=f(x)+t(x)(x-f(x))
$$

so $r: \mathbb{B} \rightarrow S^{1}$. The graph of r is a subset of $\mathbb{B} \times S^{1}$. We wish to show that r is continuous, and since S^{1} is compact and Hausdorff it is enough to show that the graph of r is closed. Do so. Hint: Suppose $\left(x_{n}, r\left(x_{n}\right)\right) \rightarrow(x, z) \in \mathbb{B} \times S^{1}$. Now show that $z=r(x)$. We'll discuss in the problem session what a boon the closed graph theorem is here.
2. Crossley 6.6
3. $4-23(\mathrm{a}, \mathrm{b})$
4. Lee 8-5
5. Lee 7-2 (Start after Monday)
6. Lee 7-3 (ditto)

