1. Suppose $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear map and $|T(u)|=|u|$ for all u in \mathbb{R}^{n}. Show that T is an isometry.
2. Show that for all $u, v \in \mathbb{R}^{n}$,

$$
u \cdot v=\frac{1}{2}\left(|u-v|^{2}-|u|^{2}-|v|^{2}\right) .
$$

Thus, if you can compute distances from 0 , then you can also compute dot products!
3. Suppose $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear map and $|T(u)|=|u|$ for all u in \mathbb{R}^{n}. Show that T preserves the dot product, i.e. that for all $u, v \in \mathbb{R}^{n}$

$$
u \cdot v=T(u) \cdot T(v) .
$$

Hint: look at the previous problem.
4. Suppose $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is linear and that

$$
T\left(e_{i}\right) \cdot T\left(e_{j}\right)=e_{i} \cdot e_{j}
$$

for some basis vectors e_{1}, \ldots, e_{n} in \mathbb{R}^{n}. Show that $T(u) \cdot T(v)=u \cdot v$ for all $u, v \in \mathbb{R}^{n}$.
5. 3.1.2

