1. 2.2 .4
2. Suppose $T: \mathbb{R} \rightarrow \mathbb{R}$ is an isometry and that $T(0)=0$. Give a direct proof that either $T(x)=x$ for all x or $T(x)=-x$ for all x.
3. Let u be a nonzero vector in \mathbb{R}^{n}. Show that for every $x \in \mathbb{R}^{n}$ there is a unique number a and unique vector w perpendicular to u such that $x=a u+w$. Hint: take a dot product to determine what a must be.
4. Recall that a reflection through a hyperplane through the origin in \mathbb{R}^{n} is a linear map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that there exists a nonzero vector u with
5. $T(u)=-u$
6. $T(w)=w$ whenever w is perpendicular to u.

Show that such a map is an isometry.
5. Suppose $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is an isometry and that $T(0)=0$. Suppose moreover that $T(v)=w$ and that $w \neq v$. Show that the midpoint $(v+w) / 2$ is perpendicular to the vector $u=v-w$. Also, draw a diagram that contains $0, v, w, u$ and $(v+w) / 2$.

