- **1.** Recal that for $p, q \in \mathbb{H}$, we define $\langle p, q \rangle = \operatorname{Re}(p\overline{q})$, where $\operatorname{Re}(q)$ is the real part of q.
 - a) Suppose $s \in \mathbb{H}$. Show that for all $p, q \in \mathbb{H}$, $\langle ps, qs \rangle = |s|^2 \langle p, q \rangle$.
 - b) Show that for all $p, q \in \mathbb{H}, \langle \overline{p}, \overline{q} \rangle = \langle p, q \rangle$.
 - c) Suppose $s \in \mathbb{H}$. Show that for all $p, q \in \mathbb{H}$, $\langle sp, sq \rangle = |s|^2 \langle p, q \rangle$.
 - d) Suppose $u \in \mathbb{H}$ and $u \neq 0$. Show that conjugation by u takes the real quaternions to themselves.
 - e) Conclude quickly that if $u \in \mathbb{H}$ and $u \neq 0$, then conjugation by u takes the imaginary quaternions to themselves.
- **2.** 2.1.1
- **3.** 2.1.2
- **4.** 2.2.1
- 5. 2.2.2
- **6.** 2.2.5
- 7. Extra Credit: 2.2.3