1. If t is a unit quaternion then the map $w \mapsto t^{-1} w t$ for w an imaginary quaterion is a rotation. This is the content of the Rotation by conjugation section of the text on pages $14-15$. Moreover, as we saw in class, $w \mapsto(-t)^{-1} w(-t)$ yeilds the same rotation. That is, the unit quaternions t and $-t$ determine, via conjugation, the same rotation. The question now is: are there any others? The following problems show that no, these are the only ones.
2. Show that if t is a unit quaternion and $t^{-1} w t=w$ for all imaginary quaternions w, then $t= \pm 1$.
3. Now give an easy argument to show that if t_{1} and t_{2} are two unit quaternions such that $\left(t_{1}\right)^{-1} w t_{1}=\left(t_{2}\right)^{-1} w t_{2}$ for all imaginary unit quaternions w, then $t_{1}= \pm t_{2}$.
4. 1.5.1
5. 1.5 .2
6. For $p, q \in \mathbb{H}$, we define $\langle p, q\rangle=\operatorname{Re}(p \bar{q})$, where $\operatorname{Re}(q)$ is the real part of q.
a) Show that if $p \in \mathbb{H}$, then $\langle p, p\rangle=|p|^{2}$.
b) Using the facts that $\overline{a b}=\bar{b} \bar{a}$ and $\operatorname{Re}(\bar{a})=\operatorname{Re}(a)$ for all $a, b \in \mathbb{H}$, show that $\langle p, q\rangle=$ $\langle q, p\rangle$.
c) For $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}$, let $Q(x)=x_{1}+x_{2} \mathbf{i}+x_{3} \mathbf{j}+x_{4} \mathbf{k}$ be its representation as a quaternion. Show that for $x, y \in \mathbb{R}^{4}, x \cdot y=\langle Q(x), Q(y)\rangle$.
d) We say that p and q are orthogonal if $\langle p, q\rangle=0$. Show that $p \in \mathbb{H}$ is orthogonal to 1 if and only if p is pure imaginary.
