1. 4.3 .4
2. 4.3 .5
3. 4.4.1
4. Consider the map ϕ defined on page 83 . Let \mathbf{i}, \mathbf{j}, and \mathbf{k} be the usual imaginary quaternions and let e_{1}, e_{2} and e_{3} be the standard basis vectors for \mathbb{R}^{3}. It is easy to show the following:

$$
\begin{align*}
\phi([\mathbf{i}, \mathbf{j}]) & =\phi(\mathbf{i}) \times \phi(\mathbf{j}) \tag{1}\\
\phi([\mathbf{j}, \mathbf{k}]) & =\phi(\mathbf{j}) \times \phi(\mathbf{k}) \tag{2}\\
\phi([\mathbf{k}, \mathbf{i}]) & =\phi(\mathbf{k}) \times \phi(\mathbf{i}) \tag{3}
\end{align*}
$$

You should show that the last of these equatins holds, and trust me on the other two.
Then, use bilinearity and just these equations to show that $\phi([u, v])=\phi(u) \times \phi(v)$ for all imaginary quaternions u and v.

