1. Let

$$
R_{\theta}=\left(\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right)
$$

Let $H=\left\{R_{\theta}: \theta \in \mathbb{R}\right\}$. That is, H is $S O(2)$.

1. Show that H is group isomorphic to S^{1}. You must exhibit the isomorphism, show that it is a homomorphism, and show that it is bejective. You may find it easiest to make the isomorphism go from S^{1} to H.
2. Suppose A is a 2×2 real matrix in $O(2)$ and $A R_{\theta}=R_{\theta} A$ for all θ. Show that there exists θ^{\prime} with $A=R_{\theta^{\prime}}$.
3. Conclude that $S O(2)$ is a maximal torus in $O(2)$.
4. 4.2.1
5. 4.2 .2
6. 4.2 .3
