Progective trinsfomations

$\mathbb{R} P^{\prime}$
$\xrightarrow{R p^{2}}$

The projecture point,

$$
(x, y, 1)
$$

$$
[A, B, C]\left[\begin{array}{l}
x \\
y \\
y
\end{array}\right]
$$

Counds is projectue scom: $\left(\mathbb{R} P^{2}\right)$

Honoshens

$$
(x, y, z)
$$

evey $p \in \mathbb{R} P^{2}$ admits
henas coords
loss of urcquenes)
whole plaue but is had to visumize

Inhamoserees

$$
(x, y, 1)
$$

Tout
most pontsicn RP P^{2} adait in harg cocrls we miss a "line at oll
unqe lakel
portal rietoe but is easy to visulize $]$

$$
\begin{aligned}
& {[A][p]=\left[A_{q}\right]_{q} \underset{\text { sclach }]_{y} \lambda}{ }}
\end{aligned}
$$

As inoarcurt of RPI

$x_{0}, x_{1}, x_{2}, x_{3}$ fou dislinit points $\left(\in \mathbb{R}^{+}\right)$
$\left(x_{0}, x_{1}, y_{2}, y_{3}\right) \quad 13$ an inveriunt.

Given disluct $v_{1}, x_{2}, y_{3} \in \mathbb{R}^{+}$

$$
y_{1}, 4_{2}, y_{3}, \in \mathbb{R}^{+}
$$

There is a uicque projectie trusbormtius $T \quad T\left(x_{i}\right)=y_{i}$

$$
\begin{aligned}
& x_{1} \rightarrow 1 \\
& x_{2} \rightarrow 0 \\
& x_{3} \rightarrow \infty
\end{aligned} \quad T(x)=\frac{\left(x-x_{2}\right)}{\left(x-x_{3}\right)} \frac{\left(x_{1}-x_{3}\right)}{\left(x_{1}-x_{2}\right)}
$$

"Fandurental Theiven of RPI"
Mobius seemety is ronlly projecture sconety of the Complex line, $\quad \operatorname{PGL}(2, \mathbb{C})$

Fardurented Theorem of $\mathbb{R P}^{2}$

Def: Let $p_{1}, p_{2}, p_{3}, p_{4} \in \mathbb{R} P^{2}$ We say thy are on geneal position if to three are an a commas lice,

Thin: Let $P_{1}, P_{2}, P_{3}, P_{4}$

$$
q_{1}, q_{2}, q_{3}, q_{4}
$$

be $\psi_{w o}$ sets of four projectue pounts (inRP ${ }^{2}$) in seneril position.
Then the exists a ourqe projectue trauformation $T \quad T\left(p_{i}\right)=q_{i} \quad i=1,2,3,4$
difforncos a) 4 points, not 3
b) goneal positian us distunct.

Pf: (convention: hats imply points in \mathbb{R}^{3})
raizeo (usable as hanogericus rocodcuts)
Let $\hat{v}_{1}=\left[\begin{array}{l}1 \\ 6 \\ 0\end{array}\right] \quad \hat{v}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right] \quad \hat{v}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right] \quad \hat{v}_{4}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
he hanogenus condiats of points in $\mathbb{R} P^{2}$,

$$
v_{2}
$$

If is enoogh to sham that if $P>P P_{4}$ are in qeical position then is a terasfantian takag $v_{i} \rightarrow p_{i}$

Corsider a motrix $\left[\begin{array}{l|l|l}\hat{w}_{1} & \tilde{w}_{2} & \hat{w}_{3}\end{array}\right]=1$
Obsenie $T\left(\tilde{v}_{1}\right)=\widehat{w_{i}}$ and simatery.

So $T\left(v_{i}\right)=p_{i} \quad-$ ff $\hat{w}_{i}=\lambda_{i} \hat{\rho}_{i}$ for same $\lambda_{i} \neq 0$,

$$
i=1,-, 3 .
$$

Here oof trusfomation must lime the form

$$
T=\left[\lambda_{1} \hat{p}_{1}\left|\lambda_{2} \hat{p}_{3}\right| \lambda_{3} \hat{p}_{3}\right] \quad \lambda_{2} \neq 0
$$

Then $T \hat{v}_{4}=\lambda_{1} \hat{p}_{1}+\lambda_{2} \hat{P}_{2}+\lambda_{3} \hat{\rho}_{3}$.
We wart this to equal $\lambda_{4} \hat{p}_{4}$ for sane $\lambda_{4} \neq 0$.
Let's ty with $\lambda_{4}=1$. We went to solve

$$
\left[\hat{p}_{1}\left|\hat{p}_{2}\right| \hat{p}_{3}\right]\left[\begin{array}{l}
\lambda_{1} \\
\lambda_{2} \\
\lambda_{3}
\end{array}\right]=\widehat{p_{4}}
$$

Claim: $\hat{\rho}_{1}, \hat{\rho}_{2}, \hat{\beta}_{3}$ are linumily independat Forded, if they
 wore lan dependant flare is a plan thru O costing all three, in which cause Paries 3 lie on a conan projector line.
So. There exists a unique solution $\left[\begin{array}{l}4 \\ \vdots \\ 3\end{array}\right]$.
We are dare 50 lars as we con shaw each $\lambda ; \neq 0$.

$$
\lambda_{1} \hat{p}_{1}+\lambda_{2} \hat{p}_{2}=\hat{p_{4}}
$$

This is ruled out beaus $P_{1},-\beta_{4}$ we in several position,

