$P_{2}:$ equirialue clisses of ponita $p \in \mathbb{R}^{3} \backslash\{0\}$ where

$$
p \sim q \longleftrightarrow \quad p=\lambda q \quad \lambda \neq 0
$$

$$
\left.\begin{array}{l}
p \in P_{2} \\
\vec{p} \in \mathbb{R}^{3}
\end{array}\right]
$$

Lines: plues theish the orisen with 0 remoned
"pounts at co"

$\vec{p}=(x, y, z)$ nut all coords aczero.
\downarrow
the bomogereas coands of p We cyl $(\lambda x, d y, \partial z)$ the homagereas coords of p as well $(\lambda \neq 0)$

$$
(1,3,7) \quad(2,9,3)
$$

Projective lines hue coordontes also!
\rightarrow plane thrush the ores (t legalese)

$$
\begin{aligned}
& A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right)=0 \\
& \langle A, B, C\rangle \rightarrow
\end{aligned}
$$

$\left(x_{0}, y_{0}, z_{0}\right) \rightarrow$ a point on the plane (yam hare chocks

$$
A_{x}+B_{y}+C_{z}=D
$$

$$
A_{x}+B_{y}+C_{z}=0
$$

$[A, B, C]$ are the homagerears coordiutes of the line. \uparrow projective
$[\lambda A, \lambda B, \lambda C]$ are hamogenius coords of the sme

$$
\text { ptane } \quad(\lambda \neq 0)
$$

line
\mathcal{L} projectare luc $\left\lvert\,<\left[\begin{array}{l}{[A, B, C]} \\ \text { homos coods. }\end{array}\right.\right.$

$$
p-\text { pount } \mid(x, y, t) \xrightarrow{\vec{p}} \text { herwog couds }
$$

Given \mathcal{L} and p him can we tell, via honosenous coardicutes, that p is on \mathcal{L} (of \& sap)

$$
\begin{aligned}
L= & {[A, B, C] \quad \vec{p}=(x, y, z) } \\
& {[\lambda A, \lambda B, \lambda] \quad\left(\lambda x, \lambda_{1}, \lambda z\right) } \\
& A_{x}+B_{y}+C_{z}=0<0 \Rightarrow \text { incidence. }
\end{aligned}
$$

For the projective plane we hue a pherameran kiwis us duality. True statements involurs pouts and lines remain true intercliansis lives and points, Frost example: Given two distant projective points there B a unique projectue lie incident to both.

Dual statement: Given two projectae lines then is a unique prosictare point incident to boll.

Pf: Let P_{1}, P_{2} be distant points in P_{z} with hano gereans coordinates \vec{p}_{1} and \vec{p}_{2}.

Let $(A, B, C)=\vec{p}_{1} \times \vec{p}_{2}$.
Recall that $\vec{a} \times \vec{b}=\overrightarrow{0}$ iff \vec{a} ad \vec{b} ane coliner.

So $(A, B, C) \neq 0$ and $[A, B, C]=L$ are hemenereneas coords for a line a by propatios of tho $\uparrow 2$.
cross product $(A, B, C) \perp \vec{p}_{i} \quad \hat{i}=1,2$.
So if $\vec{p}_{i}=\left(x_{i}, y_{i}, z_{i}\right), \quad A_{x_{1}}+B_{x_{2}}+C_{x_{3}}=0$
ad \vec{p}_{1} is on \mathcal{L}. Siniluriy \vec{p}_{2} is on \mathscr{A}.
To establish uniqueness let \hat{L} be hemiosencas coords of a line incident with pis Pr_{2}.
Then $\hat{L} \cdot \vec{p}_{1}=0$ and $\hat{L} \cdot \vec{p}_{2}=0$

Now from Vector calculus

$$
\begin{aligned}
\hat{L} \times(\underbrace{\vec{p}_{1} \times \vec{p}_{2}}_{L}) & =\vec{p}_{1} \underbrace{\left(\hat{L} \cdot \vec{p}_{2}\right)}_{0}-\vec{p}_{2} \underbrace{\left(\hat{L} \cdot \hat{p}_{1}\right)}_{0} \\
& =0-0 \\
& =0 .
\end{aligned}
$$

So \hat{L} and L are collins and $\hat{L}=\lambda L$ for sone $\lambda \neq 0$ This establishes oncqueress.

$$
\left.\begin{gathered}
9 \\
9
\end{gathered} \right\rvert\,
$$

$$
X-1
$$

