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Given L and p
how

can we tell
,
via

homogenous coordinates
,
that p is on L for L soup)

( = [A,B,c] 8--4, y;D
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K] (duty , iz)

A- ✗ + By + Cz = 0 ← ⇒ incidence
.
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For the projectile plane we have a phenomenon known

as duality . True statements invoking points and

lines remain true interchanges lives and points .

distinct
First example : Given twon projective points there

is a unique projectile line incident

to both
.

distinct
Dual statement : Given two

,
project .ie lines than

is a unique projectile point
incident to both .
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homogeneous coordinates PT and pI .

Let (A
,
B
, c) = F, ✗ pi .

Recall that a-
✗ I = E ist a- ad 5 one colmar.



So (A ,B,c) -1-0 and CA
,
B.of =L are

homogenous coords for a lire .
By properties of tho
9h

.

cross product (A. B. c) 1- Pi c-= 1,2 .

So if Ñi=(xiii , -2;) , Ax , +Bat Cts
= 0

and PT is on L . Similarly Pz is on I.

To establish uniqueness let [ be homogenous

cards at a lone incident with pi , pz .

Then I • §, = 0 and I • p3= 0 .
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So I and I are colour and [ = TL for
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