

$$
a=0,1,-1
$$

$$
\begin{aligned}
(1,-1, a i,-a i) & =\frac{1-a c^{-}}{1+a c^{2}} \frac{-1+a_{i}^{-}}{-1-a^{2}} \\
& =\frac{\left(1-a c^{2}\right)^{4}}{\left(1+a^{2}\right)^{2}} \\
\left(1-a c^{\prime}\right)^{2} & =\left(1-a^{2}\right)-2 a c^{\prime} \\
\left(1-a c^{\prime}\right)^{4} & =\left[\left(1-a^{2}\right)^{2}-4 a^{2}\right]-4 a\left(1-a^{2}\right) \dot{c} \\
a\left(1-a^{2}\right) & =0 \Rightarrow a=0, a= \pm 1
\end{aligned}
$$

Remarle: one cas shem by siniler techriques that guen two rdeal points there is a hypetolic line passing thaceath both. (is at nust one, by above, so itis uneque!)
one pout of untersection in D (ad one outride 5^{\prime}), "not porallel"
no intesections in D or on S^{\prime} : hyper porallel ore intesection on $\delta^{\prime}($ wote in $D)$: parallel

Angle of parallel ism.
line: L
point p rot on L.

By construction θ is less thin a right age.

We have violated postulate 5 .

Hyperbolic transformations.
Motives trusformations \rightarrow at mot two (andes the id) one is passible, but wot none.

Seppose T is a hyperbolic transformation and $p \notin S^{\prime}$ is a fixed point.

$$
\begin{aligned}
& T(p)=p \\
& T\left(p^{*}\right)=(T(p))^{*}=p^{*}
\end{aligned}
$$

$$
T(z)=\lambda z \quad \lambda=e^{c \theta}
$$

