
$p \in D$
for sone $\theta \in \mathbb{R}$

$$
\begin{array}{r}
T_{z}=\lambda\left(\frac{z-p}{1-z \bar{p}}\right) \\
\\
\quad \begin{array}{r}
\uparrow \\
\text { hypabolic tans formations }
\end{array}
\end{array}
$$

hyperbolic laue:

Given distinct points $p, q \in D$ There is a unique hyperbdie line incidat to both.

All hyperbole lines one con gruent

$$
\begin{aligned}
& T(p)=0 \\
& T(q)= \\
& \frac{z-p}{1-z_{p}}
\end{aligned}
$$

$$
\lambda \frac{z-D}{1-z_{\bar{p}} \zeta_{g} d z} \begin{aligned}
& p=2 \\
&
\end{aligned}
$$

$$
\begin{aligned}
& S(z)=\frac{\overline{T(q)}}{|T(q)|} z \\
& S(T(\varepsilon))=\frac{\overline{T(q)}}{|T(\varepsilon)|} T(\varepsilon)=\frac{|T(q)|^{2}}{|T(\varepsilon)|}=|T(\varepsilon)| 大 R
\end{aligned}
$$

S. T is a miperbolic transformation
takieg op to 0
q to someulue on IR.
$T(L)$ is a hyperbolic lise pussits throuish 0 ad sune son 2eo real waber.

So if's \mathbb{R}^{\perp}.

Pocrts on S^{\prime} are called ideal points.
Think of them as "points at ∞ "

Paillelisan Given a line and a pout not an the lone haw ming parallel lines ore the nethrush the point?

(nee at an idea (point)

How many tunis can two hyperbole knee intersect on S? - p^{+}

If two lies utergect at $p \in D$ They also vitersect at p^{*}.
If tray intescect at $\Theta \in S^{\prime}$
then they are the some Molls line,

Upshot: Two district lines that intersect in D cannot intersect on S!

Contrapositwe: If two hyperbolic (res intersect at a point on S^{\prime} they do not Mtersect in D.

Two lines cen intersect no mare Then twice on the boonday.

Is just ane possible? Sore.

Is twice possible

$\left(1,-1, a_{i},-a_{i}\right)$ is Real

$$
\Rightarrow a=0,1,-1
$$

