Is this a trans ormp? Yes!
c) id
b) closed under composition
c) closed under moses

Who we these?

$$
T(D)=D \text { implies there is some } p \in D
$$

$$
\text { with } T p=0
$$

$$
\begin{aligned}
& \left(\sim_{0}\right. \\
& T: \mathbb{\sigma}^{+} \rightarrow \mathbb{C}^{+} \\
& \left.T\right|_{D} D \rightarrow D \\
& T(\rho)=0 \\
& T\left(S^{\prime}\right)=S^{\prime} \\
& p^{*} \\
& p^{*}=\frac{p}{|p|^{2}}=\frac{p}{|\rho|} \cdot \frac{1}{|p|} \\
& T\left(p^{*}\right)=(T(p))^{*} \\
& =(0)^{*} \\
& =\infty
\end{aligned}
$$

$$
\left.\begin{aligned}
& T_{z}=a \frac{z-p}{z-p^{*}} \quad a \in \mathbb{C}, a \neq 0 \\
&=a \frac{z-p}{z-\bar{p}^{-1}} \quad \begin{array}{r}
T \quad z_{1} \rightarrow 1 \\
\\
z_{2} \rightarrow 0 \\
z_{3} \rightarrow 00
\end{array} \\
&=-\bar{p} a \frac{(z-p)}{1-\bar{p} z} T_{z}=\left(z, z_{1}, z_{2}, z_{z}\right) \\
&=\lambda \frac{z-p}{1-p^{z}}
\end{aligned} \right\rvert\, \begin{aligned}
& |T|=\left|\lambda \frac{1-p}{1-\bar{p} \cdot 1}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =|\lambda|\left|\frac{1-\rho}{1-\bar{\rho}}\right| \\
& =|\lambda|\left|\frac{1-p}{1-p}\right| \\
& =|\lambda| \frac{|1-p|}{|\overline{1-p}|} \\
& =|\lambda| \\
& \text { If } T \text { is a } \\
& \text { hyperbolic transformation } \\
& \text { then } T \text { hus this } \\
& T(z)=e^{i \theta} \frac{z-p}{1-\bar{p} z}< \\
& \text { form } p \in D \\
& \theta \in \mathbb{R}
\end{aligned}
$$

$$
T(z)=z \quad \text { if } \quad p=0 \quad \theta=0
$$

If $p=0$, turs isa "Eucliden" rotution

Fo- He canvese (ever T of the form (x) is a hiperboic treus formation.
Exeruse:
a) Given such a T_{5} show

$$
\tau^{-1}(\omega)=\lambda^{-1} \frac{z-q}{1-z \bar{q}} \quad q=-\lambda p \in D
$$

b) If $0 \leq c, d<1$ then $1+c d>c^{2}+d^{2}$
c) Show if $|z|<1$ then $\left|T_{z}\right|^{2}<1$.
d) Shaw if $\left|T_{z}\right|<1 \Rightarrow|z|<1$.
(use a) and c)
e) conclude $\tau(D)=D$

What should a line be in this secomety?

speciul features:

- meets S^{\prime} at riblit angles
- is a Mollius line Theough $O^{*}=0$.

If T is a hypebole transfomation
$T(L)$ is a Mobbius line.
Let $p=T(0) \in D$

$$
\begin{aligned}
T(\infty)=T\left(0^{*}\right) & =(T(0))^{*} \\
& =p^{*}
\end{aligned}
$$

$\infty \in L$ so $T(\infty) \in T(L)$.

Def: A hyperbole line is a Möbius line that intersects δ^{\prime} at right angles.

HW: Let L be a Möbius line and z a pout not on L. If L^{\prime} is a plane thawed Möhius
then L ' meets L at right arses if an only of z^{*} is on L^{\prime} whee z^{*} is the ref lection of z about L,

Prop: Let $z \in D$. A Mosbus line $\wedge^{\text {ancidat with } z}$ is a hypeholie liee if and anly if $z^{*} \in L$. (miluror worat, δ^{\prime})

Q: Given two points in \mathbb{C} hew may Möbius lines pass through then?

Goal: Given $p, q \in D \quad p \neq q$ the is a unique hypubolic line incidat to both,

Easy if $p=0$

$$
q \neq 0
$$

