$$
\begin{array}{lll}
p \rightarrow 0 & p \rightarrow \infty & (p, q, \lambda) \\
q \rightarrow \infty & q>0 & \left(q, p, \lambda^{-1}\right)
\end{array}
$$

Ore fixed pout p

$$
\begin{aligned}
& S(z)=\frac{1}{z-p} \\
& \begin{array}{l}
\mathbb{T}_{S} \\
\mathbb{C}^{+} \xrightarrow{R} \mathbb{C}^{+} \\
S^{+} \left\lvert\, \lambda_{0} \frac{1}{z-p}+b_{0}\right. \\
\mathbb{C}^{+} \xrightarrow{T} \mathbb{C}^{+}
\end{array} \quad S(z)=w \\
& z=s^{-1}(w)
\end{aligned}
$$

R is a Möbies trassformion with I fixed pocit, oo

$$
\begin{aligned}
& R(z)=\frac{a z+b}{c z+d} \quad R(\infty)=\frac{a}{c} \quad c=0 \Rightarrow R(a)=\infty \\
& a d-b c \neq 0 \\
& R(z)=\frac{a z+b}{d}=\frac{d}{d}+\frac{b}{d} \quad \begin{array}{l}
a d \neq 0
\end{array} \\
& a z+b=z \\
& a z-z=-b \\
& R(z)=a z+b \quad \\
& r=-\frac{b}{a-1} \\
& z+b=z \\
& b=0
\end{aligned}
$$

If R hus exactly one fixed pout, ∞, the

Chillage: To thut extant is b deterniod by T?

Hyperbole Geometry

$$
\begin{aligned}
& D=\{z \in \mathbb{}=|z| \angle 1\} \\
& S^{\prime}=\{z \in \mathbb{C}:|z|=1\}
\end{aligned}
$$

$$
\mathscr{M}=\{\text { Möbries transfusions } T: T(D)=D\}
$$

$$
T(D) \subseteq 0
$$

If $z \in D \quad T z \in D$ $T(D)=D$

If $w \in D$ then is $z \in D \quad \tau z=w$.

Is this a trans ormp? Yes!
c) id
b) closed under composition
c) closed under moses

Who we these?

$$
T(D)=D \text { implies there is some } p \in D
$$

$$
\text { with } T p=0
$$

