Last class
a) Cross ratio is m invariant of Mäbicas seonety
b) Four distrust points in © lie on a common line or circle of their cross ratio is real.

Def. A Möbius line is a subset of \mathbb{C}^{+}that is either a circle or is a straight line to setter with ∞.

Extarions:
b) is true replarry (1) with \mathbb{C}^{+}, we also repluce \mathbb{R} with $\mathbb{R} \cup\{\infty 0\}$

Note: We really anly reed three distrat points (but thee is so contant with anly 3)

Lemmu: Given thee distinat points in Ct there is a onique Möbius line That cantains tham.

Pf sketch 1) No point is oo
a) coliven \rightarrow liue, no cincle
b) sot colner \rightarrow unique cirole, so line.
2) One point is oo and two are note Easy.

Than: The inane of a Möbius line under a Möboues transformation is a Möbus line.

Loosely: circle \rightarrow either a circle or a line

Pf sketch: Start with a Möbrues line C.
Pick three distant points on if, $z_{i} \quad i=1,2,3$.
Let T be a Mibbius true for nation and Let $C^{\prime}=T(C)$ and let $\omega_{i}=T z_{i}$
and let C' he the varve Möbius line carters the wi's. Job: $C^{\prime}=T(C)$.
$G_{\text {was }} z \in \mathbb{C}^{+}$

$$
\begin{aligned}
z \in(& \Leftrightarrow\left(z, z_{1}, z_{2}, z_{3}\right) \in \mathbb{R} \\
& \Leftrightarrow\left(T z_{1}, T z_{1}, T_{z}, T_{z_{3}}\right) \in \mathbb{R} \\
& \Leftrightarrow\left(T_{z}, w_{1}, w_{2}, w_{3}\right) \\
& \left.\Leftrightarrow T z \in C_{3} \quad \text { here } C^{\prime}=T(c)\right) .
\end{aligned}
$$

$$
\eta_{\text {set }}^{T(A)}=\frac{\left\{T_{a}: a \in A\right\}}{\longrightarrow \text { mage under } T \text { of } A .}
$$

Miros syunctry.
sumnctic point (Evaliden)

Provisionally Given distinct $z_{1}, z_{2}, z_{3} \in \mathbb{C}^{+}$let

$$
z \in \mathbb{C}^{+}
$$

We syr z^{*} is the reflection of z about the $z_{i}^{\prime} s$ if $z \longmapsto\left(z, z_{1}, z_{2}, z_{3}\right)$

$$
\left(z^{*}, z_{1}, z_{2}, z_{\overline{3}}\right)=\overline{\left(z, z_{1}, z_{2}, z_{3}\right)}
$$

$a d b c \neq 0$

$$
S(w)=\left(w, z_{1}, z_{2}, z_{3}\right)
$$

$$
\begin{gathered}
z \mapsto \frac{z-z_{2}}{z-z_{0}}, \frac{z_{1}-z_{3}}{z_{1}-z_{2}} \\
S(w)=q \quad q \in \mathbb{C}^{+} \\
w=S^{-1}(q)
\end{gathered}
$$

Gren a Möbus trios fomution T
Clain z^{*} is the reflection of z abuat z_{i}, z_{2}, z_{3}
if and enly of
$T_{z^{*}}$ is the reflection of T_{z} abait $T_{z_{1}}, T T_{z_{2}}, T T_{z_{3}}$.

-Tz

- $T_{\text {霉 }}$

Pf: $\quad\left(z^{*}, z_{1}, z_{2}, z_{3}\right)=\overline{\left(2, z_{1}, z_{2}, z_{5}\right)}$
4

$$
\left(T z^{*}, z_{1}, z_{2}, z_{3}\right)=\left(T z_{1}, T z_{1}, T z_{2}, T z_{3}\right)
$$

and hance $T z^{*}$ is $\left(T_{z}\right)^{*}$ iff z^{*} is the refledion of z abait the z_{i} 's.

$$
\begin{aligned}
& T z, T z_{1}, T_{z_{2}} T_{z_{3}} \\
& \left((T z)^{*}, T_{z_{1}}, T_{z_{2}}, T_{z_{3}}\right)=\left(T z, T_{z_{1}}, T_{\varepsilon_{2}}, T_{z_{3}}\right)
\end{aligned}
$$

Clain: If $z_{1}, z_{2}, z_{3} \in \mathbb{R}$ and $z \in \mathbb{C}$ than

$$
z^{*}=\bar{z} .
$$

$$
\begin{aligned}
&\left(z^{*}, z_{1}, z_{2}, z_{3}\right)=\overline{\left(z, z_{1}, z_{2}, z_{3}\right)} \\
&=\overline{\left(z-z_{3}\right) \frac{\left(z_{1}-z_{3}\right)}{\left(z-z_{3}\right)}} \\
&=\frac{\left(\bar{z}-z_{2}\right)}{\left(\bar{z}-z_{3}\right)} \frac{\left(z_{1}-z_{3}\right)}{\left(z_{1}-z_{2}\right)} \\
&=\left(\bar{z}, z_{1}, z_{2}, z_{3}\right) . \\
& \text { So } z^{*}=\bar{z}
\end{aligned}
$$

*
*

Minor symuty dopeds ody on the Mábices line detemined by the zis.

$$
z \longmapsto z^{*}
$$

z_{1}, z_{2}, z_{3}

$$
z_{1}=1, \quad z_{2}=\bar{c}, \quad z_{3}=-c
$$

z

$$
\begin{aligned}
& \left(z, z_{1}, z_{2}, z_{3}\right) \\
& (z, 1, i,-\bar{c})=\frac{z-\bar{c}}{z+c^{-}} \frac{1+\bar{c}^{-}}{1-\dot{c}} \\
& \left(z^{*}, 1, i,-\bar{c}\right)=\frac{z^{*}-c^{-}}{z^{*}+c^{-}} \frac{1+\bar{c}}{1-\bar{c}}
\end{aligned}
$$

$$
\begin{aligned}
\left(z^{*}, 1, i,-i\right) & =\overline{(z, 1, i,-i)} \\
& =\overline{\frac{z-c^{\prime}}{z+c^{\prime}} \frac{1+\bar{c}}{1-i}} \\
& =\frac{\overline{z+c^{\prime}}}{z-i} \frac{1-\bar{c}}{1+\dot{i}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1+\bar{i}-1}{1-i \bar{z}^{-1}} \frac{i+1}{i-1} \\
& =\frac{-i+\bar{z}^{-1}}{-\bar{c}-\bar{z}^{-1}} \frac{i f}{\overline{-}-1} \\
& =\frac{\bar{z}^{-1}-\bar{c}}{\bar{z}^{-1}+\dot{c}} \frac{1+\bar{i}}{1-\bar{c}} \\
& =\left(\bar{z}^{-1}, 1, \bar{c},-\bar{c}\right) \\
\left(z^{*}, 1, i,-\bar{c}\right) & =\left(\bar{z}^{-1}, \mid, \bar{c},-\bar{c}\right) \\
(a, 1, i,-\bar{c}) & =(b, \mid, i,-\bar{c})
\end{aligned}
$$

$$
\begin{aligned}
& z^{*}=\bar{z}^{-1} \\
& z^{-1}=\frac{\bar{z}}{|z|^{2}} \\
& \bar{z}^{-1}=\frac{z}{|z|^{2}}
\end{aligned}
$$

Exerise: For a corcle of radius R centaced ot 0

$$
z^{*}=R^{2} \frac{z}{|z|^{2}}
$$

