

Clam $S_{z}=\frac{e z+f}{g z+h}$
$(T . S)$ is a Mob tas tris fomation and

$$
M_{T \cdot S}=M_{T} M_{S}
$$

$$
\begin{aligned}
& T_{z}=\frac{a z+b}{c z+d} \quad S z=\frac{e z+f}{g z+h} \\
& T(S(z))=\frac{a\left(\frac{e z+f}{g z+h}\right)+b}{c\left(\frac{e z+f}{g z+h}\right)+d} \\
&=\frac{\alpha(e z+f)+b(g z+h)}{c(e z+f)+d(g z+h)} \\
&=\frac{(a e+h g) z+a f+b h}{(e+d y) z+c f+d h}
\end{aligned}
$$

$$
\left.\begin{array}{rl}
{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{ll}
a e+b g & a f+b h \\
c e+d g & c f+d h
\end{array}\right]} \\
M_{T}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad M_{T \cdot S}=M_{T} M_{S}
\end{array}\right] \begin{aligned}
& \operatorname{det}\left(M_{T \cdot S}\right)=\operatorname{det}\left(M_{T} M_{S}\right) \\
& T \quad \operatorname{det}\left(M_{\tau}\right) \operatorname{det}\left(M_{S}\right) \neq 0 \\
&\left(M_{T}\right)^{-1} \longrightarrow \\
&\left(M_{T}\right)^{-1} \cdot M_{T}=I \rightarrow \text { id } \frac{\mid z+0}{O z+1} \\
& \uparrow \quad a d-b c+0
\end{aligned}
$$

Upshot: Evey Möbius trisfomatim is incertible $M_{T^{\prime}}=\left(M_{T}\right)^{-1}$
$\left(\mathbb{C}^{+}, m\right) \quad$ Mobus Georety.
$\longrightarrow M_{\text {ibhas }}$ trans Oomantions

$$
f(z)=e^{i \theta} z+b
$$

$$
T_{z}=\frac{a z+b}{c z+d}
$$

$$
\begin{aligned}
& M_{T}=\left[\begin{array}{ll}
\lambda a & \lambda b \\
\lambda c \lambda d
\end{array}\right] \\
& \operatorname{det}\left(M_{T}\right)=\lambda^{2}(d d-b c)
\end{aligned}
$$

T. Euclidem timsformatra,

Looks like T nogut uniquely deternad by its action on my 3 nes colvern distinct pooits.

Cluim: $z_{1}, z_{2}, z_{3} \notin \mathbb{C}$
There is a unique Möbius trasfonmatian

$$
\begin{aligned}
& z_{i} \rightarrow w_{i} \\
& i=1,2,3
\end{aligned}
$$

Def: A fixed point of a Mobbies frasfonaction
T is a point $z \in \mathbb{C}^{+}$with $\tau_{z}=z$.
Every Mobbies transf that is not the deatay his at moot 2 fall ${ }^{l}$? Claim Möbuis tranfomitious hale at most 2 fixed points. (except for the rdenty)

$$
\begin{array}{ll}
T, S & T\left(z_{1}\right)=w_{1}=S\left(z_{1}\right) \\
& T\left(z_{2}\right)=w_{2}=S\left(z_{2}\right) \\
& T\left(z_{3}\right)=w_{3}=S\left(z_{3}\right) \\
& \frac{\left(S^{-1} \circ T\right)\left(z_{i}\right)=S^{-1}(w)=z_{i} \quad r=1,2,3}{I d}
\end{array}
$$

$$
\begin{aligned}
S^{-1} \circ T & =I d \\
T & =S
\end{aligned}
$$

$$
\begin{array}{ll}
T z=z & \text { ob } \mapsto \frac{a}{c} \\
\frac{a z+b}{c z+d}=z & z^{2}=0 \\
a z+b=z(c z+d) & z^{2}=a \\
c z^{2}+d z-a z-b=0 & \\
c z^{2}+(d-a) z-b=0 &
\end{array}
$$

$c \neq 0$ at meat two roots in \mathbb{C} and as is ort a fixed pout.
at most two fried pouts

$$
\begin{aligned}
& c=0 \quad \frac{a z+b}{d} \quad c \neq 0 \Rightarrow d \neq 0 \\
& T z a z+b \quad a \neq 0 \\
& T_{\infty}=\infty \quad a z+b=z \\
& (a-1) z=-b \\
& z=\frac{-b}{a-1} \quad \text { (if } a \neq 1 \text {) } \\
& z+b=z \quad b \neq 0 \text { only is a for } \\
& b=0 \text { all points ane. }
\end{aligned}
$$

$$
\begin{aligned}
& T(\infty)=\frac{a}{c} \quad a \neq 0 \quad c=0 \quad \frac{a}{c}=\infty \\
& z_{1} \rightarrow 1 \\
& w_{1} \rightarrow 1 \\
& z_{2} \longrightarrow 0 \\
& w_{2} \rightarrow 6 \\
& z_{3} \longrightarrow 00 \\
& \mathrm{~W}_{3} \rightarrow 00 \\
& T z=\frac{\left(z-z_{2}\right)\left(z_{1}-z_{3}\right)}{\left(z-z_{3}\right)\left(z_{1}-z_{2}\right)} \quad z_{1}, z_{2}, z_{3} \in \mathbb{C} \\
& 00 \rightarrow 1 \\
& z_{2} \rightarrow 0 \\
& T_{z}=\frac{z-z_{2}}{z-z_{3}} \\
& Z_{3} \rightarrow \infty
\end{aligned}
$$

$$
\begin{aligned}
& z_{1} \rightarrow 1 \\
& \infty \rightarrow 0 \\
& z_{3} \rightarrow \infty
\end{aligned} \quad \frac{z_{1}-z_{3}}{z-z_{3}} \quad\binom{\text { q}}{b}
$$

$$
\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=\frac{\left(z_{0}-z_{2}\right)\left(z_{1}-z_{3}\right)}{\left(z_{0}-z_{3}\right)\left(z_{1}-z_{2}\right)}
$$

\rightarrow cross ratio

