What the heck is congruace?

These figures are "the sane" fum the point of view of Euclid

Well hame a set S of points. (©)
Well hae two subsets $A_{1}, A_{2} \subseteq S$
We wont to know if A_{1} is congruent to A_{2}.

$$
\cong
$$

We excade the notion of congruace by menss of prefored fuctions $f: S \rightarrow S$

$$
f(z)=i z \quad(z \in \mathbb{C})
$$

Allawatle fuctions \&

$A_{1} \cong A_{2}$ if there exists $f \in \mathcal{M}$ such that $\underbrace{f\left(A_{1}\right)}=A_{2}$

$$
\longrightarrow\{f(a)=a \in A,\} \subseteq S
$$

Rules for conguace:

1) $A \cong A \quad$ for all $A \subseteq S$
2) If $A \cong B$ then $B \cong A$
3) $A \cong B, B \cong C \Rightarrow A \cong C$
$\mathcal{L} \sim T_{\text {ese inspire }} \begin{array}{r}\text { restrictions } \\ \\ (\text { properties of) }\end{array}$
4) id: $S \rightarrow S$ alloys is an elarat of $\$ A$.

$$
i d(s)=s \quad i d(A)=A
$$

2) If $f \in \notin y$ then f is invertible ad $f^{-1} \in \mathscr{H}$.

$$
f: c \rightarrow c \quad f(z)=0
$$

If $A \cong B$ there exists $f \in \&$ with $f(A)=B$.
Then $f^{-1}(f(A))=f^{-1}(B)$

$$
A=\underbrace{f^{-1}}(B)
$$

3) If $f, g \in \mathscr{H}$ then g of $\in \mathscr{H}$ also.

$$
\begin{aligned}
& f(A)=B \quad g(B)=C \\
& g(f(A))=g(B)=C \\
& \\
& (g \circ f)(A)=C
\end{aligned}
$$

Def: Let S be a nonempty set.
A family $\&$ of functions from S to S is called a transformation grape if

1) id $\in \&$
2) Each $f \in \notin$ is invertible ad $f^{-1} \in \mathscr{H}$,
3) Y is closed under composition

Def. A geometry is a pair (s, \mathcal{H}) where S s a set and \mathcal{H} is a frosisfomation group on S.

$$
\begin{array}{ll}
& f_{0} f_{1} f_{2} f_{3} \\
& f_{0}=i d \quad f_{1}(z)=i z \quad f_{2}(z)=-z \quad f_{3}(z)=-i z \\
S=\mathbb{C} \quad & f_{k}(z)=i_{z}^{k} \\
& =\left\{f_{0}, f_{11} f_{2}, f_{3}\right\}
\end{array}
$$

Traval grap $5 \quad y=\{$ id $\}$

For the trivival vearetry a set is congruent only to itself. Erlager Progum (Felix Klean)
2) Oriented Euckiden Gecometry

$$
\begin{aligned}
& \delta=\mathbb{C} \quad \notin=\left\{f: f(z)=e^{i \theta} z+b, \quad \theta \in \mathbb{R}, b \in \mathbb{C}\right\} \\
& f_{\theta, b} \\
& i d=f_{0,0} \quad e^{i 0} z+0=1-z=z \\
& \left(f_{\psi, c} \circ f_{\theta, b}\right)(z)=f_{\psi, c}\left(e^{i \theta} z+b\right) \\
& =e^{i \psi}\left(e^{i \theta} z+b\right)+c \\
& =e^{i \psi} e^{c \theta} z+e^{i \psi} b+c \\
& =e^{i(\psi+\theta)} z+e^{i \psi b+c}
\end{aligned}
$$

$$
f_{\psi+\theta, e^{c \psi} b+c} \in \mathcal{L}
$$

3) Eucliden Geconety

$$
S=\mathbb{C} \quad, y=\left\{f_{\theta, b}, \bar{f}_{\theta, b}=\theta \in \mathbb{R}, b \in \mathbb{C}\right\}
$$

4) Trasslational Geomely

$$
\begin{aligned}
& S=\mathbb{C} \\
& \Delta y=\left\{t_{b}: b \in \mathbb{C}\right\} \quad t_{b}(2)=z+b \\
& y_{\text {trival }} \subseteq \mathcal{H}_{\text {traul }} \subseteq \mathcal{H}_{\text {OEnc }} \subseteq \mathcal{H}_{E_{u c}}
\end{aligned}
$$

Mation of congnuice sets easter

