

I -3 Subtraction of lines

$C E=A B$ and what remands is the result of sabluction,

I-4 (SAS)

$$
\begin{gathered}
\angle B A C=\angle E D F \\
\angle B C A=\angle E F D \\
A C=D F
\end{gathered}
$$

"superposition" wierdo opeation not fleshach out

1) Pat B on E so $A B$ lies on $D E$
2) So A lies on D (leasth is prosecual by superposition?)
3) Tien $\angle A B C$ wiracides witl $\measuredangle D E F$
4) So C comcules with F
(arles re preserved by sepecpositor?)
5) So $C A=F D$, and so on for angles,

Euclid goes ont of his way to auoud seperposition

$$
I-4, \frac{(S S S)}{I-8}, \frac{(A A S, A S A)}{I I I-24}
$$

(notin othes where he could have)
Moden axibutic georetics take SAS as an aximm
A different moden appreach is to fully embirace superposition We will be interested in operations that preseave "thisg!"
(e. 5 , lexth, ansle) (isometry) w
$I-S$

isocelos triagolos hare equal ansles $A B=A C$

1) Extad $A B$ to a pount 1
2) Extard $A C$ to E so that

$$
C E=B D
$$

3) Form $D C$ ad $B E$
4) $\triangle A B E=\triangle A C D$ by $S A S$
5) $\triangle C B D=\triangle B C E$ by $S A S$
6) $\triangle E B C=\triangle D C B$
7) $\angle D B C+\angle A B C=2 \angle$
8) $\triangle E C B+\angle A C B=2 \not \square$
9) $\angle A B C=\angle \angle A C B$ by subtraction

I-6 if a trouble hus two equal anoles then it is isoceles

First caners!
(ρf, by contradiction)

$$
\Rightarrow A B=A C
$$

1) If the length ane different then W LOG, $A C<A B$
2) Find D on $A B$ so

$$
B D=A C
$$

3)

$$
\begin{aligned}
& \triangle A B C=\measuredangle A C B \text { and } \\
& B C=C B \\
& \text { so } S A S \Rightarrow \\
& \triangle D B C=\triangle A C B
\end{aligned}
$$

4) So the lesser is equal the whole

I-7 supports:
I- 8 SSS via seperposition
I- 9 Angle bisection

1) wrase so $A B=C B$
2) Build equilution \triangle

$$
A \subset D
$$

3)

$$
\begin{aligned}
& A B=C B \\
& A C=C A \\
& B D=D B
\end{aligned}
$$

4) $\angle A B D=\measuredangle C B D$ by S5S

I- 10 Brsecti's a lie sogment

1) Build $\triangle A B C$ equiluteal
2) Bisect $\angle A C B$
3) Extend to D
4) By SAS
$\triangle A C D=\triangle B C D$
so $A D=B D \quad \ddot{ }$
I- Il Extaders a perpadicular

5) Fad points B, C wit $A B=A C$
6) Make an equitutal A $\triangle B D C$
7) $B_{y} 5 S 5 \angle D A B=\triangle D A C$
