The integers modulo n, \mathbb{Z}_n , consist of the elements $0, 1, \ldots, n-1$. To add or multiply two numbers a and b, you add or multiply them as usual for integers, and then you find the remainder of your answer upon division by n. If n is prime, you can show that \mathbb{Z}_n is an algebraic field: it has division as well as multiplication.

The two smallest cases are \mathbb{Z}_2 and \mathbb{Z}_3 . Here are the addition and multiplication tables:

	0	1	1		0	1	+	ł	0	1	2	×	0	1	2
T	0	1		^	0	1	0)	0	1	2	0	0	0	0
0	0	1		0	0	0	1	1	1	2	3	1	0	1	2
1	1	0		1	0	1		L	1	2	5	1	0	1	~
	_		J		-		2	2	2	0	1	2	0	2	1

- 1. Draw a picture of \mathbb{Z}_2 and a picture of $(\mathbb{Z}_2)^2 = \mathbb{Z}_2 \times \mathbb{Z}_2$. Yeah, it's just dots. But try to arrange them in a way insipred by how you draw, e.g., \mathbb{R}^2 .
- **2.** Recall that slope is rise over run. If your rise comes from \mathbb{Z}_2 and your run comes from \mathbb{Z}_2 , how many slopes can you make? We'll stay far, far away from 0/0 of course; that's not a slope.
- **3.** To make a line in \mathbb{Z}_2 you start at your favorite point and then add 1 to *x* and adjust the *y* coordinate by the slope *m*. Now repeat to get the whole line. Well, that's true except for 'vertical' lines. To make these add one to *y* and don't adjust *x*. Anyway, starting at the point (0,0), how many different lines are there?
- **4.** How many lines are there in $(\mathbb{Z}_2)^2$? Be careful you don't miss one!
- 5. Given a line in $(\mathbb{Z}_2)^2$, how many lines are parallel to it?
- 6. Parallel lines should meet at points at infinity. How many points at infinity should there be in the corresponding projective plane, $\mathbb{Z}_2\mathbb{P}^2$?
- 7. How many points are there in $\mathbb{Z}_2 \mathbb{P}^2$?
- **8.** Including the line at infinity, how many lines are there in $\mathbb{Z}_2 \mathbb{P}^2$?
- **9.** Try to draw a picture of $\mathbb{Z}_2 \mathbb{P}^2$ with all of its points and lines.
- **10.** An abstract projective plane satisfies three axioms:
 - 1. Every pair of two points is on exactly one line.
 - 2. Every pair of two lines intersects in exactly one point.
 - 3. There exist four points, no three of which are on a common line.

Verify that $\mathbb{Z}_2 \mathbb{P}^2$ is an abstract projective plane.

- **11.** Draw a picture of $(\mathbb{Z}_3)^2 = \mathbb{Z}_3 \times \mathbb{Z}_3$.
- **12.** A line in $(\mathbb{Z}_3)^2$ is a set of the form $L_{x,v} = \{x + sv : s\mathbb{Z}_3\}$ where $x, v \in (\mathbb{Z}_3)^2$ and where $v \neq 0$. Explain why if v is a vector (a, b) with $a \neq 0$ we can write $L_{x,v} = L_{x,\hat{v}}$ where $\hat{v} = (1, c)$ for some $c \in \mathbb{Z}_3$. Can you spot a crucial algebraic operation that you use in this argument?
- **13.** How many different slopes can a line through the origin in $(\mathbb{Z}_3)^2$ have?
- 14. How many lines through the origin are there in $\mathbb{Z}_3 \mathbb{P}^2$?
- **15.** How many points at ∞ should there be in $\mathbb{Z}_3 \mathbb{P}^2$? How many points are there in $\mathbb{Z}_3 \mathbb{P}^2$?
- **16.** Given a line in $(\mathbb{Z}_3)^2$, how many lines seem to be parallel to it?
- 17. How many lines are there in $(\mathbb{Z}_3)^2$? How many lines are there in $\mathbb{Z}_3\mathbb{P}^2$?
- **18.** Does $\mathbb{Z}_3 \mathbb{P}^2$ satisfy the axioms of a projective plane?
- **19.** Show that in $(\mathbb{Z}_4)^2$ there is a pair of points with **two** distinct lines between them. No projective plane here...