- **1.** Henle 4.1
- **2.** Henle 4.2
- **3.** It is convenient to describe a line in terms of a point on the line $(w \in \mathbb{C})$ and a direction parallel to the line $(v \in \mathbb{C} \setminus \{0\})$. In this spirit we define the line $L_{w,v}$ as the set of points

Due: February 2, 2022

$$L_{wv} = \{w + tv : t \in \mathbb{R}\}.$$

Furthermore, a set A of points in \mathbb{C} is a line if there exist $w \in \mathbb{C}$ and $v \neq 0$ with $A = L_{w,v}$. Show that lines are preserved under Euclidean transformations.

- **4.** Let z and w be two points in the plane. Show that there is a Euclidean transformation that takes z to zero and takes w to a point on the real axis.
- **5.** Let b be a positive real number. Show that the set of points in \mathbb{C} that are equidistant to -b and b is the set of imaginary numbers (i.e. the numbers with $\overline{z} = -z$).

Quickly conclude (using the preceding exercises) that the set of points equidistant to any two distinct complex numbers is a line.

- **6.** Henle 4.3
- **7.** Henle 4.4