1. Prove that the exterior angles of a regular pentagon add to four right angles.
2. Deduce the opposite angles of a rhombus (a paralellogram with equal sides) are equal.
3. Here is a special case of Euclid's parallel postulate, which we will call the right triangle axiom.

Given a right angle $A B D$ and an acute angle $\alpha=C A B$ on the same side of the line $A B$, the ray $A C$ when extended will intersect the extension of ray $B D$.

Show that the right triangle axiom is equivalent to Playfair's axiom. That is, show that Euclid Book I Postulates 1-4 together with the right triangle axiom imply Playfair's axiom, and that Book I Postulates 1-4 together with Playfair's axiom imply the right triangle axiom.
4. For complex numbers $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$, use a direct computation (without resort to polar coordinates) to show that $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$. You will probably find it easier to show $\left|z_{1} z_{2}\right|^{2}=\left|z_{1}\right|^{2}\left|z_{2}\right|^{2}$, which is fine.
5. Henle 2.10
6. Henle 2.15

