- 1. Text, 5.2
- **2.** This variation of text, 5.3. This problems concerns the wave equation $u_{tt} = c^2 u_{xx}$ with initial data u(x, 0) and $u_t(x, 0)$.
 - a) Use the one-sided $O(h^2)$ approximation for the first derivative from Table 1.1 on page 7 to derive an approximation for $u_t(x, 0)$.
 - b) The approximation you just wrote down involves values of u at timesteps t_0 , t_1 and t_2 . The centered difference strategy for the wave equation also yields an equation involving values of u at timesteps t_0 , t_1 and t_2 . Combine these two equations together to eliminate the values at t_1 to get an equation that relates values at t_2 to values at t_0 .
 - c) Explain why the numerical scheme you just wrote down does not satisfy the CFL condition.
 - d) Instead, introduce an $O(h^2)$ approximation for the initial condition by introducing the (unknown) value of u at t_{-1} . This is a so-called ghost point.
 - e) Combine the equation you just derived together with the centered difference strategy for the wave equation to obtain a technique for computing an approximation of u at t_1 from initial conditions.
 - f) Show that the equation you just derived satisfies the CFL condition.
- **3.** Text, 5.6