
Math F615: Take-Home Final Due: May 2, 2021, 9pm

Rules and format:

• You are welcome to discuss this exam with me (David Maxwell) to ask for hints and
so forth.

• If you �nd a suspected typo, please contact me as soon as possible and I will commu-
nicate it to the class if needed.

• You my not discuss the exam with anyone else until a�er the due date/time.

• You are permitted to reference any text you would like in solving these problems.

• Each problem is weighted equally.

• �e due date/time is absolutely �rm.

1. Consider the problem
uxx + γu4 = f (x)

on the interval 0 ≤ x ≤ 1 with u(0) = u(1) = 0.

a) If u(x) = sin(3πx), what is the value of f (x)?
b) Write a code to solve this problem based on the following approach:

(a) Use centered di�erences to as in Section 2.2 of your text to approximate the
second derivative and derive an algebraic system to solve for a vector of un-
knowns ui that approximate u(xi).

(b) Implement a numericalmethod to solve the system (with user-supplied right-
hand side f and constant γ) by applyingNewton’s method to approximate the
solution of the algebraic system. Newton’s method will be applied to a system
of the form F(u) = 0, and iterations should stop when the residual norm
∣∣F(u)∣∣ has been reduced by 10−9 of its original value.

(c) Show that with the veri�cation case from part a), and separately with γ = 0,
that your code exhibits O(h2) convergence.

2. Text, 5.6 (a)-(c)

3. �e TR-BDF2 method is an implicit second-order Runge-Kutta method of the following
form.

u∗ = un + k4 [f (un) + f (u∗)]

un+1 = 1
3
[4u∗ − un + k f (un+1]

(1)

a) Show that this method is L-stable.

Math F615: Take-Home Final Due: May 2, 2021, 9pm

b) Write a numerical code using TR-BDF2 as the basis for solving the heat equation
ut = uxx in a Method of Lines approach. Verify, using the test case of Homework
6, problem 1c, that you observe O(h2) convergence.

c) Discuss the merits of this strategy versus Backwards Euler and Crank Nicolson.

4. �e aim of this problem is to implement an elementary �nite volume scheme for the 1-d
advection equation and to practice facility with codemodularity and themethod of lines.
Do not worry that there is a lot of writing in the description of this problem; the aim is
to provide a lot of guidance.

�e problem we are solving is
ut + aux = 0

with a > 0 on the domain [0, 1] with periodic boundary conditions.
a) On homework 3 you wrote an Euler’s method (RK1) and a RK4 ODE solver each
with signature: ode solver(f,t0,u0,T,M). Modify your code (or the code in
the solutions) to create an additional RK2 ODE solver with this same signature.
Verify your new solver converges at the anticipated rate by testing with the same
test as in homework 3.

b) Finite volume schemes for the advection equation require computation of ux at
cell faces. We will break the space domain [0, 1] into N subintervals of equal width
h and endpoints xi = ih, i = 0, . . . ,N . Note that xN = 1 is identi�ed with x0 = 0.
Each cell centered at xi has boundary points xi−1/2 and xi+1/2 with xi±1/2 = xi ±
h/2 with the understanding that x−1/2 is represented by xN+1/2. Write a function
upwind flux(u,a) that receives a vector of values of u at points [x0, . . . , xN−1]
and velocity a and returns the uxes at [x−1/2, x1/2, . . . , xN−1/2] corresponding to
the upwind scheme. You may �nd the slide “upwind as the donor cell method”
from Ed’s lectures to be helpful. Verify your code is correct by applying it to the
case N = 4, u = [1, 2, 3] and a = 2. Python users may �nd the function np.roll is
handy. MATLAB users might like circshift.

c) Write an advection solver with signature
advection(u0,a,T,N,M,ode solver,flux computer) where

• u0 is a function taking a vector of x locations as an argument and returning
a vector of initial values of u at the corresponding locations.

• a is the (positive) wave velocity
• T is the �nal time; the solution is computed on [0, T]
• N is the number of spatial subintervals of [0, 1]; recall 0 and 1 are identi�ed.
• M is the number of time steps.
• ode solver is a function with the same signature as in part a for solving
ODEs

2

Math F615: Take-Home Final Due: May 2, 2021, 9pm

• flux computer is a function with the same signature as in part b for com-
puting uxes

Your function should return (x,t,u) where x and t are vectors of x and t values
at the grid points, with x including both 0 and 1. �e matrix u should contain the
computed value of u at the grid points (your choice of ordering is �ne) but should
contain values of u at both 0 and at 1.
Test your solver with your forward Euler ODE solver and your upwind ux com-
puter. Use u0(x) = sin(2πx) as your initial condition, a = 1, and a time in-
terval of T = 4 so that the �nal value of u should match the initial value of u.
Verify that the error at the �nal timestep is indeed O(h) by testing with N =
[50, 100, 200, 500, 1000] and a suitable corresponding choice ofM. �row out any
low values of N needed to detect the order of convergence. MATLAB users will
want to recall that if you want to pass a function as an argument, you need to use
a function handle; to pass sin as an argument, you would use @sin.

d) Write a minmod ux computer with the same signature and conventions as your
upwind ux computer but using the minmod slope limiter. Youmay �nd the three
slides starting with “slope reconstruction” from Ed’s lectures to be helpful. �en
repeat the convergence test from part c; what order of convergence to do you ob-
serve? Do not be worried if you do not like the results that you see. If you have
coded your ux limiter correctly, the graph of the solution at the �nal time will be
boxy butwithout spurious oscillations.

e) Repeat the above but using an RK2 ode solver. What order of convergence do you
observe? You may again discard low values of N .

f) Repeat the above but using an RK4 ode solver. What order of convergence do you
observe? Comment on your observed order of convergence.

g) Part of the point of �nite volumemethods is to converge at a better rate than O(h)
yet not introduce spurious oscillations. Discontinuous initial data is great for trig-
gering those oscillations. Using T=4 and N=100 generate a plot of the numerical
solution at T = 4 using both upwinding and the minmod slope limiter compared
to the true solution for

u0(x) =
⎧⎪⎪⎨⎪⎪⎩
1 ∣x − 1/2∣ < 1/4
0 otherwise

A small amount of extra credit will be given for adding the results of a LaxWendro�
computation to this �gure.

3

