Transformation Review

1. Explain what each does to the original graph $y=f(x)$.

Assume $c>0$	Description	Assume $c>1$	Description
$f(x)+c$		$f(x)$	
$f(x)-c$		$f(c x)$	
$f(x+c)$		$-f(x)$	
$f(x-c)$		$f(-x)$	

2. Let $f(x)=x^{2}$. Graph each of the following using the ideas from \# 1 above.
(a) $f(x)$

(c) $f(x-1)$

(b) $-f(x)$

(d) $f(x-1)-1$

Trigonometry Review

3. An isosceles triangle has a height of 10 ft and its base is 8 feet long. Determine the sine, cosine, tangent, cotangent, secant and cosecant of the base angle α.

4. Using a 45-45-90 triangle and a 30-60-90 triangle find the coordinates of any three marked points, one of each color on the unit circle. (The blue points are at multiples of $\frac{\pi}{6}$, the red points are at multiples of $\frac{\pi}{4}$, and the black points are at multiples of $\frac{\pi}{2}$.)

5. Without a calculator evaluate:
(a) $\sin \left(\frac{2 \pi}{3}\right)$
(b) $\cos \left(\frac{5 \pi}{4}\right)$
(c) $\tan \left(\frac{-\pi}{4}\right)$
6. On the axes below, graph at least two cycles of $f(x)=\sin x, f(x)=\cos (x)$. Label all x - and y-intercepts.

7. (a) Graph $y=\sin (2 x)$ and $y=3-2 \cos (x)$ on adjacent graphs. Label the points $0, \pi / 2, \pi, 3 \pi / 2$ and 2π on the x-axis.

(b) Use the graph of $f(x)=\sin (2 x)$ to determine the domain of $\mathrm{f}(\mathrm{x})=\csc (2 \mathrm{x})$
